Recombinant Mouse Acetylcholinesterase Protein (His Tag)

Beta LifeScience SKU/CAT #: BLPSN-0047

Recombinant Mouse Acetylcholinesterase Protein (His Tag)

Beta LifeScience SKU/CAT #: BLPSN-0047
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Tag His
Host Species Mouse
Accession NP_033729.1
Background Acetylcholinesterase, also known as ACHE, is an enzyme that degrades (through its hydrolytic activity) the neurotransmitter acetylcholine, producing choline and an acetate group. Acetylcholinesterase plays a crucial role in nerve impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). ACHE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy. It is an externally oriented membrane-bound enzyme and its main physiological role is termination of chemical transmission at cholinergic synapses and secretory organs by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). ACHE plays important roles in the cholinergic system, and its dysregulation is involved in a variety of human diseases. ACHE was significantly down-regulated in the cancerous tissues of 69.2% of hepatocellular carcinoma (HCC) patients, and the low ACHE expression in HCC was correlated with tumor aggressiveness, an elevated risk of postoperative recurrence, and a low survival rate. Both the recombinant ACHE protein and the enhanced expression of ACHE significantly inhibited HCC cell growth in vitro and tumorigenicity in vivo. ACHE as a tumor growth suppressor in regulating cell proliferation, the relevant signaling pathways, and the drug sensitivity of HCC cells. Thus, ACHE is a promising independent prognostic predictor for HCC recurrence and the survival of HCC patients. ACHE is responsible for the hydrolysis of acetylcholine in the nervous system. It is inhibited by organophosphate and carbamate pesticides. However, this enzyme is only slightly inhibited by organophosphorothionates.
Description A DNA sequence encoding the mouse ACHE (NP_033729.1) (Met 1-Leu 614) was expressed, with a His tag at the C-terminus.
Source HEK293
Predicted N Terminal Glu 32
AA Sequence Met 1-Leu 614
Molecular Weight The recombinant mouse ACHE consists of 594 a.a. and has a predicted molecular mass of 66.2 kDa as estimated in SDS-PAGE under reducing conditions.
Purity >97% as determined by SDS-PAGE
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method
Bioactivity Measured by its ability to cleave Acetylthiocholine.The specific activity is > 250 nmols/min/ug.
Formulation Lyophilized from sterile PBS, pH 7.4.
Stability The recombinant proteins are stable for up to 1 year from date of receipt at -70°C.
Usage For Research Use Only
Storage Store the protein under sterile conditions at -20°C to -80°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed