Recombinant Human S100B Protein (Fc Tag)

Beta LifeScience SKU/CAT #: BLPSN-4139

Recombinant Human S100B Protein (Fc Tag)

Beta LifeScience SKU/CAT #: BLPSN-4139
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Tag Fc
Host Species Human
Accession NP_006263.1
Synonym NEF, S100, S100-B, S100beta
Background S1B is a member of the S1 family of proteins containing two EF-hand-type calcium-binding motifs. S1B exerts both intracellular and extracellular functions. Intracellular S1B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S1B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. This calcium binding astrocyte-specific cytokine, presents a marker of astrocytic activation and reflects CNS injury. The excellent sensitivity of S1B has enabled it to confirm the existence of subtle brain injury in patients with mild head trauma, strokes, and after successful resuscitation from cardiopulmonary arrest. Recent findings provide evidence, that S1B may decrease neuronal injury and/or contribute to repair following traumatic brain injury (TBI). Hence, S1B, far from being a negative determinant of outcome, as suggested previously in the human TBI and ischemia literature, is of potential therapeutic value that could improve outcome in patients who sustain various forms of acute brain damage.
Description A DNA sequence encoding the human S100B (NP_006263.1) (Ser 2-Glu 92) was expressed with the fused Fc region of human IgG1 at the N-terminus.
Source HEK293
Predicted N Terminal Glu 20
AA Sequence Ser 2-Glu 92
Molecular Weight The recombinant human Fc/S100B is a disulfide-linked homodimeric protein. The reduced monomer consists of 328 a.a. and has a predicted molecular mass of 37.2 kDa. As a result of glycosylation, the apparent molecular mass of rhFc/S100B monomer is approximately 40 kDa in SDS-PAGE under reducing conditions.
Purity >95% as determined by SDS-PAGE
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method
Bioactivity 1. Measured by its ability to bind mouse S100A1 in a functional ELISA.2. Measured by its ability to bind TP53 in a functional ELISA.3. Immobilized recombinant human Fc-S100B at 10 ug/mL (100 ul/well) can bind biotinylated human S100A1 with a linear range of 15.6-250 ng/mL.
Formulation Lyophilized from sterile PBS, pH 7.4.
Stability The recombinant proteins are stable for up to 1 year from date of receipt at -70°C.
Usage For Research Use Only
Storage Store the protein under sterile conditions at -20°C to -80°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed