Recombinant Human Parkin Protein

Beta LifeScience SKU/CAT #: BLA-6669P

Recombinant Human Parkin Protein

Beta LifeScience SKU/CAT #: BLA-6669P
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Host Species Human
Accession O60260
Synonym AR JP E3 ubiquitin ligase E3 ubiquitin protein ligase parkin E3 ubiquitin-protein ligase parkin FRA6E LPRS 2 LPRS2 PARK 2 Park2 Parkin 2 Parkinson disease (autosomal recessive juvenile) 2 Parkinson disease (autosomal recessive, juvenile) 2, parkin Parkinson disease protein 2 Parkinson juvenile disease protein 2 Parkinson protein 2 E3 ubiquitin protein ligase Parkinson protein 2, E3 ubiquitin protein ligase (parkin) PDJ PRKN PRKN 2 PRKN2 PRKN2_HUMAN Ubiquitin E3 ligase PRKN
Description Recombinant Human Parkin Protein was expressed in Baculovirus infected Sf9 cells. It is a Full length protein
Source Baculovirus infected Sf9 cells
Molecular Weight 68 kDa including tags
Purity >75% Densitometry.
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method
Formulation Liquid Solution
Stability The recombinant protein samples are stable for up to 12 months at -80°C
Reconstitution See related COA
Unit Definition For Research Use Only
Storage Buffer Shipped on dry ice. Upon delivery aliquot and store at -80°C. Avoid freeze / thaw cycle.

Target Details

Target Function Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins. Substrates include SYT11 and VDAC1. Other substrates are BCL2, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPTIN5, TOMM20, USP30, ZNF746, MIRO1 and AIMP2. Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context. Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation. Mediates 'Lys-63'-linked polyubiquitination of a 22 kDa O-linked glycosylated isoform of SNCAIP, possibly playing a role in Lewy-body formation. Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy. Protects against mitochondrial dysfunction during cellular stress, by acting downstream of PINK1 to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components. Depending on the severity of mitochondrial damage and/or dysfunction, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to regulating mitochondrial dynamics and eliminating severely damaged mitochondria via mitophagy. Activation and recruitment onto the outer membrane of damaged/dysfunctional mitochondria (OMM) requires PINK1-mediated phosphorylation of both PRKN and ubiquitin. After mitochondrial damage, functions with PINK1 to mediate the decision between mitophagy or preventing apoptosis by inducing either the poly- or monoubiquitination of VDAC1, respectively; polyubiquitination of VDAC1 promotes mitophagy, while monoubiquitination of VDAC1 decreases mitochondrial calcium influx which ultimately inhibits apoptosis. When cellular stress results in irreversible mitochondrial damage, promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins such as TOMM20, RHOT1/MIRO1, MFN1 and USP30. Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains, leading to mitophagy. The PINK1-PRKN pathway also promotes fission of damaged mitochondria by PINK1-mediated phosphorylation which promotes the PRKN-dependent degradation of mitochondrial proteins involved in fission such as MFN2. This prevents the refusion of unhealthy mitochondria with the mitochondrial network or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes. Regulates motility of damaged mitochondria via the ubiquitination and subsequent degradation of MIRO1 and MIRO2; in motor neurons, this likely inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria undergoing mitophagy in the soma. Involved in mitochondrial biogenesis via the 'Lys-48'-linked polyubiquitination of transcriptional repressor ZNF746/PARIS which leads to its subsequent proteasomal degradation and allows activation of the transcription factor PPARGC1A. Limits the production of reactive oxygen species (ROS). Regulates cyclin-E during neuronal apoptosis. In collaboration with CHPF isoform 2, may enhance cell viability and protect cells from oxidative stress. Independently of its ubiquitin ligase activity, protects from apoptosis by the transcriptional repression of p53/TP53. May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity. May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. May represent a tumor suppressor gene.
Subcellular Location Cytoplasm, cytosol. Nucleus. Endoplasmic reticulum. Mitochondrion. Mitochondrion outer membrane. Cell projection, neuron projection. Cell junction, synapse, postsynaptic density. Cell junction, synapse, presynapse.
Protein Families RBR family, Parkin subfamily
Database References
Associated Diseases Parkinson disease (PARK); Parkinson disease 2 (PARK2)
Tissue Specificity Highly expressed in the brain including the substantia nigra. Expressed in heart, testis and skeletal muscle. Expression is down-regulated or absent in tumor biopsies, and absent in the brain of PARK2 patients. Overexpression protects dopamine neurons fro

Gene Functions References

  1. work provides a framework for the mechanisms of parkin's loss-of-function, indicating an interplay between ARJP-associated substitutions and phosphorylation of its Ubl domain. PMID: 29530980
  2. Data show that E3 ubiquitin-protein ligase parkin (Parkin) undergoes a conformational change upon phosphorylation. PMID: 28276439
  3. carnosic acid induces parkin by enhancing the ubiquitination of ARTS, leading to induction of XIAP. PMID: 28224479
  4. PARK2 promoter SNP's rs2276201 and rs9347683 are shown to be significantly associated with the risk of colorectal cancer development PMID: 30296568
  5. Increased levels of Parkin are detected in lens epithelial cells exposed to H2O2-oxidative stress. Parkin translocates to mitochondria of lens epithelial cells upon H2O2-oxidative stress exposure. Parkin ubiquitin ligase activity is required for clearance of damaged mitochondria in lens epithelial cells exposed to H2O2-oxidative stress. PMID: 27702626
  6. Examined the enzymatic activity of Parkin with M458L mutation. We show that the M458L mutant retains its autoubiquitination potential in vitro but not in cells. M458L mutant fails to protect the mitochondria against hydrogen peroxide, leading to cell death. PMID: 29223129
  7. The results demonstrate that Nix can serve as an alternative mediator of mitophagy to maintain mitochondrial turnover, identifying Nix as a promising target for neuroprotective treatment in PINK1/Parkin-related Parkinson's disease. PMID: 28281653
  8. Female patients with PARK2 polymorphism had significantly higher risk of VTE recurrence PMID: 29671165
  9. Studies indicate a functional PTEN-induced putative kinase 1)(PINK1)/E3 ubiquitin protein ligase (parkin) mitophagy pathway in neurons [Review]. PMID: 29085955
  10. indings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-Parkinson's disease patients PMID: 29501959
  11. parkin deficiency induces synaptotagmin-11 accumulation and PD-like neurotoxicity in mouse models, which is reversed by SYT11 knockdown in the SNpc or knockout of SYT11 restricted to dopaminergic neuron PMID: 29311685
  12. Parkin expression is inversely correlated with HIF-1alpha expression and metastasis in breast cancer. Results reveal an important mechanism for Parkin in tumor suppression and HIF-1alpha regulation. PMID: 29180628
  13. mitochondrial dysfunction activates the PINK1/Parkin signaling and mitophagy in renal tubular epithelial cells under albumin overload condition. PMID: 29494565
  14. The authors demonstrate that RABGEF1, the upstream factor of the endosomal Rab GTPase cascade, is recruited to damaged mitochondria via ubiquitin binding downstream of Parkin. RABGEF1 directs the downstream Rab proteins, RAB5 and RAB7A, to damaged mitochondria, whose associations are further regulated by mitochondrial Rab-GAPs. PMID: 29360040
  15. DNAJ proteins keep Parkin C289G mutant protein in a soluble, degradation-competent form. PMID: 27713507
  16. S-nitrosylated PINK1 decreases Parkin translocation to mitochondrial membranes PMID: 29166608
  17. Parkinsonism associated with Parkin gene mutation is one of the most common familial forms of Parkinson Disease, which is characterized by early onset of symptoms, slow progression, elective dopaminergic neuronal loss and the absence of Lewy bodies. PMID: 28523222
  18. A transcriptional repressor network including THAP domain containing 11 protein (THAP11) was identified and negatively regulates endogenous PARKIN abundance. PMID: 29269392
  19. Study explored the role of parkin proteins in Parkinson's disease (PD) neurodegeneration by analyzing their expression profile in an in vitro model exposed to divers neurotoxins. Results showed that up- or down-regulation of specific splice isoforms may be a direct effect of toxin exposure. Moreover, the isoforms may exert different actions in neurodegeneration via modulation of different molecular pathways. PMID: 28688199
  20. Mutations in the PARK2 gene were detected in four of the six tested families with a history of early-onset Parkinson disease. PMID: 28913705
  21. This study showed that the heterozygous Parkin mutation carriers show subtle motor abnormalities when a detailed, specialized motor examination is applied and compared to mutation-negative matched control subjects. PMID: 28716427
  22. The methylation of SNCA and PARK2 promoter regions were significantly lower in early-onset Parkinson's disease patients compared to control group. Methylation status of the SNCA might be associated with positive family history of Parkinson's disease. PMID: 28830306
  23. Show that the C-terminal GTPase of the Parkin primary substrates Miro1 and Miro2 are necessary and sufficient for efficient ubiquitination. We present several new X-ray crystal structures of both Miro1 and Miro2 that reveal substrate recognition and ubiquitin transfer to be specific to particular protein domains and lysine residues. PMID: 27605430
  24. This study showed that the manganese exposure among smelters may lead to a reduced expression of PARK2. PMID: 28826884
  25. parkin-dependent targeting of misregulated BAX on the mitochondria provides substantial protection against BAX apoptotic activity. PMID: 28760928
  26. This study indicated that heterozygous deletions and duplications can play an important role in the pathogenesis of Parkinson's disease and can be considered as dominant mutations with low penetrance. PMID: 27798970
  27. Parkin was found to interact with p53; however, this was abolished in Parkin KO mice model, which prevented p53 degradation reducing inflammatory arthritis. PMID: 28395174
  28. These findings unveil an important role of Parkin in protecting genome stability through positively regulating translesion DNA synthesis (TLS) upon UV damage, providing a novel mechanistic link between Parkin deficiency and predisposition to skin cancers in PD patients. PMID: 28430587
  29. Thus, the present study indicated that parkin knockout inhibits neural stem cell differentiation by JNK-dependent proteasomal degradation of p21. PMID: 28656059
  30. Parkin hyper-activation by pUb(S57) demonstrates the first PINK1-independent route to active parkin, revealing the roles of multiple ubiquitin phosphorylation sites in governing parkin stimulation and catalytic activity. PMID: 28689991
  31. the results of this study suggest that mutations on specific genes (PARK2 and LRRK2) compromising basal ganglia functioning may be subtly related to language-processing mechanisms. PMID: 28205494
  32. This study identified five microRNAs that play a role in the etiology of Parkinson's disease likely by modifying expression of PRKN and additional genes required for normal cellular function. PMID: 27717584
  33. MicroRNA-181a has a role in suppressing parkin-mediated mitophagy and sensitizing neuroblastoma cells to mitochondrial uncoupler-induced apoptosis PMID: 27281615
  34. Findings suggest that PARK2 might have a tumor suppressor role in the development of chronic obstructive pulmonary disease (COPD) and lung cancer. PMID: 27329585
  35. Here we review the evidence supporting PINK1/Parkin mitophagy in vivo and its causative role in neurodegeneration, and outline outstanding questions for future investigations. PMID: 28213158
  36. Although PARK2 may be a pathological factor for neurodevelopmental disorders , likely not all variants are pathogenic, and a conclusive assessment of PARK2 variant pathogenicity requires an accurate analysis of their location within the coding region and encoded functional domains. PMID: 27824727
  37. VPS35 regulates parkin substrate AIMP2 toxicity by facilitating lysosomal clearance of AIMP2. PMID: 28383562
  38. Results show that HERC5 mediates covalent ISG15 conjugation to parkin in mammalian cells and that ISG15 is conjugated to the Lys349 and Lys369 residues of parkin. This ISGylation increases the ubiquitin E3 ligase activity of parkin. Also, some familial Parkinson's disease-associated missense mutations of parkin display defective ISGylation. PMID: 27534820
  39. an impaired PINK1-PARK2-mediated neuroimmunology pathway contributes to septic death. PMID: 27754761
  40. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans. PMID: 27558669
  41. REVIEW: role of parkin in modulating excitatory and dopaminergic synapse functions PMID: 28335015
  42. The effects of variants in the Parkin, PINK1, and DJ-1 genes along with evidence for their pathogenicity have been summarized. (Review) PMID: 26965687
  43. Parkin is a potential link between melanoma and Parkinson's disease PMID: 27297116
  44. these results unveil a novel functional coupling between Parkin and the CaV2.2 channels. PMID: 28957379
  45. These results demonstrate the feasibility of using UbFluor for quantitative studies of the biochemistry of RBR E3s and for high-throughput screening of small-molecule activators or inhibitors of PARKIN and other RBR E3 ligases. PMID: 28710279
  46. data suggest that ROS may act as a trigger for the induction of Parkin/PINK1-dependent mitophagy. PMID: 28848050
  47. The proportions of some phospholipids and glycosphingolipids were altered in the lipid profiles of parkin-mutant skin fibroblasts obtained from Parkinson disease patients. PMID: 28109117
  48. Adipogenic process can be dissected into 3 stages according to the participation of PARL-PINK1-Parkin system. Findings reveal the sequential adipogenic events directed by PARL-PINK1-Parkin system, add more evidence supporting the convergence of pathogenesis leading to neurodegenerative and metabolic disease PMID: 28641777
  49. These results highlight the combined effects of Parkin and PGC-1alpha in the maintenance of mitochondrial homeostasis in dopaminergic neurons. These two factors synergistically control the quality and function of mitochondria, which is important for the survival of neurons in Parkinson's disease. PMID: 28053050
  50. Data suggest that inactivation of cytosolic parkin in dopaminergic neurons of the substantia nigra contributes to neurodegeneration in sporadic Parkinson disease. [REVIEW] PMID: 28860335


Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed