Recombinant Human FUT8 Protein (aa 68-575, His Tag)

Beta LifeScience SKU/CAT #: BLPSN-2169

Recombinant Human FUT8 Protein (aa 68-575, His Tag)

Beta LifeScience SKU/CAT #: BLPSN-2169
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Tag His
Host Species Human
Accession Q9BYC5
Synonym MGC26465
Background Alpha (1,6) fucosyltransferase 8, also known as FUT8, is a member of the glycosyltransferase family. Fucosyltransferases are the enzymes transferring fucose from GDP-Fuc to Gal in an alpha1,2-linkage and to GlcNAc in alpha1,3-linkage, alpha1,4-linkage, or alpha1,6-linkage. All fucosyltransferases utilize the same nucleotide sugar, their specificity reside in the recognition of the acceptor and in the type of linkage formed. Fucosyltransferases share some common structural and catalytic features. On the basis of protein sequence similarities, these enzymes can be classified into four distinct families: (1) the alpha-2-fucosyltransferases, (2) the alpha-3-fucosyltransferases, (3) the mammalian alpha-6-fucosyltransferases, and (4) the bacterial alpha-6-fucosyltransferases. The alpha-3-fucosyltransferases constitute a distinct family as they lack the consensus peptide, but some regions display similarities with the alpha-2 and alpha-6-fucosyltranferases.
Description A DNA sequence encoding the human FUT8 isoform 1 (Q9BYC5-1) (Arg 68-Lys 575) was fused with a His tag at the carboxy-terminus.
Source Baculovirus-Insect Cells
Predicted N Terminal Arg 68
AA Sequence Arg 68-Lys 575
Molecular Weight The recombinant human FUT8 consists of 518 a.a. and has a calculated molecular mass of 60 kDa. It migrates as an approximately 55 kDa band in SDS-PAGE under reducing conditions.
Purity >95% as determined by SDS-PAGE
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method
Bioactivity Measured by its ability to hydrolyze the donor substrate GDP fucose.The specific activity is >0.75 pmoles/min/ug.
Formulation Lyophilized from sterile 20mM Tris, 500mM NaCl, pH 8.0, 10% gly.
Stability The recombinant proteins are stable for up to 1 year from date of receipt at -70°C.
Usage For Research Use Only
Storage Store the protein under sterile conditions at -20°C to -80°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed