Recombinant Human c-MET Protein (aa 956-1390, His & GST Tag)

Beta LifeScience SKU/CAT #: BLPSN-1338

Recombinant Human c-MET Protein (aa 956-1390, His & GST Tag)

Beta LifeScience SKU/CAT #: BLPSN-1338
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Tag His&GST
Host Species Human
Accession P08581
Synonym AUTS9, c-Met, DFNB97, HGFR, RCCP2
Background Hepatocyte growth factor receptor (HGFR), also known as c-Met or mesenchymal-epithelial transition factor (MET), is a receptor tyrosine kinase (RTK) that has been shown to be overexpressed and/or mutated in a variety of malignancies. HGFR protein is produced as a single-chain precursor, and HGF is the only known ligand. Normal HGF/HGFR signaling is essential for embryonic development, tissue repair or wound healing, whereas aberrantly active HGFR has been strongly implicated in tumorigenesis, particularly in the development of invasive and metastatic phenotypes. HGFR protein is a multifaceted regulator of growth, motility, and invasion, and is normally expressed by cells of epithelial origin. Preclinical studies suggest that targeting aberrant HGFR signaling could be an attractive therapy in cancer.Immune CheckpointImmunotherapyCancer ImmunotherapyTargeted Therapy
Description A DNA sequence encoding the human MET (P08581-1) (Lys956-Ser1390) was fused with the N-terminal His-tagged GST tag at the N-terminus.
Source Baculovirus-Insect Cells
Predicted N Terminal Met
AA Sequence Lys956-Ser1390
Molecular Weight The recombinant human MET /GST chimera consists of 672 a.a. and has a calculated molecular mass of 76.8 kDa. The recombinant protein migrates as an approximately 68 kDa band in SDS-PAGE under reducing conditions.
Purity >90% as determined by SDS-PAGE
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method
Bioactivity 1. The specific activity was determined to be 10 nmol/min/mg using MBP as substrate.2. Measured by its binding ability in a functional ELISA. Immobilized human HGFR (aa 956-1390) at 10 ug/ml (100 ul/well) can bind biotinylated human HGF-his with a linear range of 15.6-125 ng/ml.
Formulation Supplied as sterile 20mM Tris, 500mM NaCl, pH 7.4, 10% glycerol, 3mM DTT.
Stability The recombinant proteins are stable for up to 1 year from date of receipt at -70°C.
Usage For Research Use Only
Storage Store the protein under sterile conditions at -20°C to -80°C. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

Target Details

Target Function Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of muscles and neuronal precursors, angiogenesis and kidney formation. In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Promotes also differentiation and proliferation of hematopoietic cells. May regulate cortical bone osteogenesis.; (Microbial infection) Acts as a receptor for Listeria monocytogenes internalin InlB, mediating entry of the pathogen into cells.
Subcellular Location Membrane; Single-pass type I membrane protein.; [Isoform 3]: Secreted.
Protein Families Protein kinase superfamily, Tyr protein kinase family
Database References
Associated Diseases Hepatocellular carcinoma (HCC); Renal cell carcinoma papillary (RCCP); Deafness, autosomal recessive, 97 (DFNB97); Osteofibrous dysplasia (OSFD)
Tissue Specificity Expressed in normal hepatocytes as well as in epithelial cells lining the stomach, the small and the large intestine. Found also in basal keratinocytes of esophagus and skin. High levels are found in liver, gastrointestinal tract, thyroid and kidney. Also

Gene Functions References

  1. the miR-19a/c-Met pathway plays a critical role in acquired resistance to gefitinib and that the manipulation of miR-19a might provide a therapeutic strategy for overcoming acquired gefitinib resistance. PMID: 28592790
  2. The expression of C-Met and HER2 protein in lung adenocarcinoma is highly correlated, and whether it is synergistic in the targeted therapy of lung adenocarcinoma deserves further study. PMID: 29400000
  3. MET overexpression was more frequently found in high grade myxofibrosarcoma and the epithelioid variant. Chromosome 7 polysomy, rather than MET gene regional amplification, might account for the overexpression. of MET protein. PMID: 30126419
  4. miR-449a suppresses hepatocellular carcinoma tumorigenesis by down-regulating activity in the c-Met/ERK pathway. PMID: 30108016
  5. We found MET amplifications in two cases of endometrial clear-cell carcinoma with mixed features. PMID: 29633423
  6. Regarding gene mutation abundance, NGS enables the detection of low-abundant ctDNA in blood based on ultra-deep sequencing, and our patient benefited from crizotinib despite the low abundance of MET exon 14 skipping. These data indicate that we can choose targeted therapy despite the low abundance of gene mutations. PMID: 29110851
  7. The interplay of dual MET/HER2 overexpression in the AKT and ERK pathways for esophageal cancer is described. Therefore, combination therapy could be a novel strategy for EAC with amplification of both MET and HER2. PMID: 29223420
  8. MET inactivation in the context of the BRAF-activating mutation is driven through a negative feedback loop involving inactivation of PP2A phosphatase, which in turn leads to phosphorylation on MET inhibitory Ser985. PMID: 30224486
  9. MET Exon 14 Skipping Mutations in Non-small Cell Lung Cancer PMID: 30037377
  10. MET activation, by either METex14 mutations or amplification, is characteristic of a subset of early stage NSCLCs and may coexist with ERBB2 amplification. PMID: 29139039
  11. Results demonstrate that serum level of miR-658 is significantly lower in the NM group than in the DM group. Meanwhile, the levels of PAX3 and MET are lower in the NM group than in the DM group too. Both overexpression and silence of miR-658 significantly up-regulate or down-regulate the levels of PAX3 and MET in gastric cell lines. PMID: 29630524
  12. MiR-206 inhibits the development of epithelial ovarian cancer cell by directly targeting c-Met and inhibiting the c-Met/AKT/mTOR signaling pathway. PMID: 29807226
  13. These results suggest that gastric cancer progression is not associated with a unique signaling pathway and that a feedback loop may exist between the HGF/c-Met and Notch1 signaling pathways, which may result in therapeutic resistance. PMID: 29781036
  14. Comparative analysis revealed a strong association between MET expression and MET amplification (85% concurrence) in primary stomach tumors and matched liver metastasis. Survival analyses revealed that both MET amplification and MET overexpression were prognostic of poor outcomes. PMID: 29790169
  15. High c-met expression is associated with oral squamous cell carcinoma. PMID: 29286169
  16. FOXO1 serves as an important linker between HER2 and MET signaling pathways through negative crosstalks and is a key regulator of the acquired lapatinib resistance in HER2-positive GC cells. PMID: 28343375
  17. analysis of how the cMET blockade augments radiation therapy in patients with NF2 PMID: 29440379
  18. these findings highlight the relevance of cross-species protein interactions between murine feeder cells and human epithelial cells in 3T3-J2 co-culture and demonstrate that STAT6 phosphorylation occurs in response to MET activation in epithelial cells. However, STAT6 nuclear translocation does not occur in response to HGF, precluding the transcriptional activity of STAT6. PMID: 29771943
  19. c-Met-activated Mesenchymal Stem Cells (MSC) pre-exposed to hypoxia interact with PrPC at the site of ischemic injury to increase the efficiency of MSC transplantation. PMID: 29705776
  20. A novel G-quadruplex motif formed in the Human MET promoter region. PMID: 29054971
  21. a METex14 del mutation-positive NSCLC patient who responded to crizotinib but later relapsed, demonstrated a mixed response to glesatinib including reduction in size of a MET Y1230H mutation-positive liver metastasis and concurrent loss of detection of this mutation in plasma DNA. Together, these data demonstrate that glesatinib exhibits a distinct mechanism of target inhibition and can overcome resistance to PMID: 28765324
  22. This study demonstrates that simultaneous inhibition of c-Met and Src signaling in MD-MSCs triggers apoptosis and reveals vulnerable pathways that could be exploited to develop NF2 therapies. PMID: 28775147
  23. prolonged treatment of single HGF/c-Met or Hh inhibitor leads to resistance to these single inhibitors, likely because the single c-Met treatment leads to enhanced expression of Shh, and vice versa. Targeting both the HGF/c-Met and Hh pathways simultaneously overcame the resistance to the single-inhibitor treatment and led to a more potent antitumor effect in combination with the chemotherapy treatment. PMID: 28864680
  24. We identified unique and tumor-specific tyrosine phosphorylation rewiring in tumors resistant to treatment with the irreversible third-generation EGFR-inhibitor, osimertinib, or the novel dual-targeting EGFR/Met antibody, JNJ-61186372. PMID: 28830985
  25. TGF-beta negatively controls the HGF/c-MET pathway by regulating of stemness in glioblastoma. PMID: 29238047
  26. The preclinical efficacy and safety data provide a clear rationale for the ongoing clinical studies of Sym015 in patients with MET-amplified tumors. PMID: 28679766
  27. High MET expression is associated with malignant pleural mesothelioma. PMID: 28560410
  28. the results of real-time PCR and western blotting revealed that Huaier extract decreased p65 and c-Met expression and increased IkappaBalpha expression, while paclitaxel increased p65 expression and reduced IkappaBalpha and c-Met expression.The molecular mechanisms may be involved in the inhibition of the NF-kappaB pathway and c-Met expression PMID: 29039556
  29. Data found that the expression of c-Met was significantly increased in human oral squamous cell carcinoma (OSCC) tissues than in normal mucosa adjacent to the tumor, but was not correlated with clinicopathological parameters. Also, further findings indicated the potential role of c-Met in the progression of OSCC. PMID: 29115556
  30. Our data show that S49076 exerts its cytotoxic activity at low doses on MET-dependent cells through MET inhibition, whereas it inhibits growth of MET-independent cells at higher but clinically relevant doses by targeting Aurora B PMID: 28619752
  31. MET expression was shown to be significantly reduced in the superior temporal gyrus cortex of autism spectrum disorders individuals. PMID: 28322981
  32. In SCCHN, immunohistochemical overexpression of c-MET above cut-off levels III and particularly II was associated with inferior survival outcomes and advanced disease PMID: 29103754
  33. Here we present a case series of three such patients who achieved were cMET amplified and showed partial response on Crizotinib PMID: 29199685
  34. c-Met/beta1 integrin complex whose ligand-independent cross-activation and robust affinity for fibronectin drives invasive oncologic processes. PMID: 28973887
  35. tivantinib did not suppress MET signaling, and selective MET inhibitors demonstrated an antiproliferative effect only in MHCC97H, the unique cell line displaying MET gene amplification. HCC tumors with high expression of cell proliferation genes defined a group of patients with poor survival. PMID: 28246274
  36. Studies show that MET mutations have been found in cancer of unknown primary origin (CUP) being clustered to the SEMA and TK domain of the receptor. The biomechanical properties of MET mutants might trigger the hyper-invasive phenotype associated to CUP. [review] PMID: 29037604
  37. Data show that Kruppel like factor 4 (KLF4) was overexpressed in met proto-oncogene protein (c-Met)-overexpressing non-small-cell lung cancer (NSCLC) cells and tissues. PMID: 29624806
  38. SOCS1 attenuates migration and invasion properties of hepatocellular carcinoma cells at least partly via modulation of MET-mediated epithelial-mesenchymal transition, and controls invasive tumor growth. PMID: 29085209
  39. The authors reconfirmed EGFR mutation as a strong predictive marker of Non-Small-Cell Lung Cancer. However, c-MET positivity was not associated with response or progression-free survival, although c-MET overexpression correlated with some clinical characteristics. PMID: 29502124
  40. findings show oncogene E5 is primarily responsible for Met upregulation; E5-induced Met contributes motility of HPV-containing cells; these studies show a new role for E5 in epithelial-stromal interactions, with implications for cancer development PMID: 29609071
  41. EGFR T790M mutation and cMET amplification are main mechanisms leading to EGFR TKI resistance in lung adenocarcinoma. PMID: 29616327
  42. MET activation is associated with drug resistance in chronic myeloid leukemia. PMID: 28418880
  43. High glucose activated Met receptor in HK2 cells independently of HGF, via induction of integrin a5b1 and downstream signaling. This mode of Met activation was associated with tubular cell damage and apoptosis and it may represent a novel pathogenic mechanism and a treatment target in diabetic nephropathy. PMID: 28819999
  44. The purpose of this study was to explore gene copy number (GCN) variation of EGFR, HER2, c-MYC, and MET in patients with primary colorectal cancer. PMID: 28764718
  45. HGF/c-MET pathway mediates VEGFR inhibitor resistance and vascular remodeling in NSCLC. PMID: 28559461
  46. Because c-Met is strongly associated with pathological grade, stage and disease-specific survival, c-Met levels may have potential to predict patient prognosis and to guide clinical diagnosis and treatment of patients with renal cell carcinoma PMID: 28427859
  47. miR-1 is downregulated in ovarian cancer tissues, and may play a tumor suppressive role by inhibiting c-Met expression and its effects on the regulation of cell proliferation, migration and invasion PMID: 28698064
  48. Proto-oncogene proteins c-met (MET) mutations Y1248H and D1246N confer resistance in vitro and in vivo. PMID: 28396313
  49. MET overexpression is found in 23.8% of surgically resected NSCLC. MET amplification prevails in 4.6% and is associated with MET overexpression. Both have no influence on prognosis. PMID: 28838386
  50. study highlights the role of tissue differentiation on pathological response to neoadjuvant chemotherapy in gastric cancer and shows no impact between FOXP3, HER2 and MET expression in terms of tumor regression grading PMID: 29696715

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed