Recombinant Human Rac-Beta Serine/Threonine-Protein Kinase (AKT2) Protein (His-SUMO)

Beta LifeScience SKU/CAT #: BLC-10175P
Greater than 90% as determined by SDS-PAGE.
Greater than 90% as determined by SDS-PAGE.

Recombinant Human Rac-Beta Serine/Threonine-Protein Kinase (AKT2) Protein (His-SUMO)

Beta LifeScience SKU/CAT #: BLC-10175P
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Description Recombinant Human Rac-Beta Serine/Threonine-Protein Kinase (AKT2) Protein (His-SUMO) is produced by our E.coli expression system. This is a protein fragment.
Purity Greater than 90% as determined by SDS-PAGE.
Uniprotkb P31751
Target Symbol AKT2
Synonyms Akt2; AKT2_HUMAN; HIHGHH; Murine thymoma viral (v-akt) homolog 2; murine thymoma viral (v-akt) homolog-2; Oncogene AKT2 protein kinase B beta; PKB; PKB beta; PKBB; PKBBETA; PRKBB; Protein kinase Akt 2; Protein kinase Akt-2; Protein kinase B beta; RAC beta; rac protein kinase beta; RAC-BETA; RAC-beta serine/threonine-protein kinase; RAC-PK-beta; RACbeta; v akt murine thymoma viral oncogene homolog 2; V-AKT murine thymoma viral oncogene homolog 2
Species Homo sapiens (Human)
Expression System E.coli
Tag N-6His-SUMO
Target Protein Sequence NEVSVIKEGWLHKRGEYIKTWRPRYFLLKSDGSFIGYKERPEAPDQTLPPLNNFSVAECQLMKTERPRPNTFVIRCLQWTTVIERTFHVDSPDEREEWMRAIQMVANSLKQRAPGEDPMDYKCGSPSDSSTTEEMEVAVSKARAKVTMNDFDYLKLLGKGTFGKVILVREKATGRYYAMKILRKEVIIAKDEVAHTVTESRVLQNTRHPFLTALKYAFQTHDRLCFVMEYANGGELFFHLSRERVFTEERARFYGAEIVSALEYLHSRDVVYRDIKLENLMLDKDGHIKITDFGLCKEGISDGATMKTFCGTPEYLAPEVLEDNDYGRAVDWWGLGVVMYEMMCGRLPFYNQDHERLFELILMEEIRFPRTLSPEAKSLLAGLLKKDPKQRLGGGPSDAKEVMEHRFFLSINWQDVVQKKLLPPFKPQVTSEVDTRYFDDEFTAQSITITPPDRYDSLGLLELDQRTHFPQFSYSASIRE
Expression Range 2-481aa
Protein Length Partial
Mol. Weight 71.6kDa
Research Area Apoptosis
Form Liquid or Lyophilized powder
Buffer Liquid form: default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. Lyophilized powder form: the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%.
Storage 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C.
Notes Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.

Target Details

Target Function AKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development.; One of the few specific substrates of AKT2 identified recently is PITX2. Phosphorylation of PITX2 impairs its association with the CCND1 mRNA-stabilizing complex thus shortening the half-life of CCND1. AKT2 seems also to be the principal isoform responsible of the regulation of glucose uptake. Phosphorylates C2CD5 on 'Ser-197' during insulin-stimulated adipocytes. AKT2 is also specifically involved in skeletal muscle differentiation, one of its substrates in this process being ANKRD2. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. Phosphorylates CLK2 on 'Thr-343'.
Subcellular Location Cytoplasm. Nucleus. Cell membrane; Peripheral membrane protein. Early endosome.
Protein Families Protein kinase superfamily, AGC Ser/Thr protein kinase family, RAC subfamily
Database References
Associated Diseases Diabetes mellitus, non-insulin-dependent (NIDDM); Hypoinsulinemic hypoglycemia with hemihypertrophy (HIHGHH)
Tissue Specificity Expressed in all cell types so far analyzed.

Gene Functions References

  1. AKT2 inhibition as a powerful therapeutic target against CSC. PMID: 29667444
  2. AKT2 and XIST expression was identified as a potential biomarker participating in the effect of ATP5J in colorectal cancer PMID: 29484395
  3. Authors present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2. PMID: 29075783
  4. the present study suggested that PHB2 may promote Prostate cancer cell migration by inhibiting the expression of AKT2. These results provide information regarding the role of PHB2 in Prostate cancer migration and malignancy PMID: 29207197
  5. Data found that S131 of Akt2 is not phosphorylated by CK2 although the consensus sequence recognized by CK2 (S/T-x-x-E/D/pS/pT) is conserved. A single sequence element, a T at position n+1, hampers phosphorylation, causing an alpha-helix structure preventing the recognition of its own consensus by CK2. Using synthetic peptides, study suggests that Akt2 S131 could be phosphorylated by kinases of the Plk family. PMID: 29494643
  6. Findings demonstrate that DSBs trigger pro-survival autophagy in an ATM- and p53-dependent manner, which is curtailed by AKT2 signaling. PMID: 28837154
  7. genetic association studies in population of men in Finland: Data suggest that a partial loss-of-function variant in AKT2 (p.Pro50Thr) is associated with type 2 diabetes in the population studied; this AKT2 variant is associated with reduced insulin-mediated glucose uptake in multiple insulin-sensitive tissues. PMID: 29141982
  8. miR2965p/AKT2 axis serves important roles in Hepatocellular carcinoma carcinogenesis and progression. PMID: 28586057
  9. miR296 is downregulated in tissue from patients with pancreatic cancer and pancreatic carcinoma cell lines. These findings suggested that it may function as a tumor suppressor via inhibiting the growth, migration and invasion of pancreatic cancer cells. AKT2 was validated as a direct target of miR296 in pancreatic cancer cells. PMID: 28534950
  10. miR-143-3p acts as a novel tumor suppressive miRNA by regulating gastric tumor growth, migration and invasion through directly targeting AKT2 gene PMID: 28404925
  11. Our findings suggest that Akt2 might be associated with the resistance to anti-EGFR therapies, especially the use of erlotinib against PC, and that this resistance can be overcome by combined treatment with a PI3K inhibitor. Akt2 expression could become a predictive biomarker for erlotinib resistance in PC. PMID: 28440469
  12. Studied action of linoleic acid (LA) on cell migration and neoplasm invasiveness of breast cancer cells. Findings show Akt2 activation requires EGFR and PI3K activity, whereas migration and invasion are dependent on FFAR4, EGFR and PI3K/Akt activity. PMID: 28456993
  13. Analysis of genomic data from TCGA demonstrated coamplification of CCNE1 and AKT2 Overexpression of Cyclin E1 and AKT isoforms, in addition to mutant TP53, imparted malignant characteristics in untransformed fallopian tube secretory cells, the dominant site of origin of high-grade serous ovarian cancer PMID: 27663592
  14. Recent studies reveal that AKT2-NOX2 signaling has critical roles in Ca mobilization, ROS generation, degranulation, and control of the ligand-binding function of cell surface molecules, thereby promoting heterotypic cell-cell interactions in thromboinflammation. PMID: 28650848
  15. The expression levels of AKT2 and CDC25C showed lower expression in neural tube defects. And the percentage of methylated region of AKT2 promoter were increased in neural tube defects. PMID: 27871477
  16. Report frequency of genetic variation in Akt2 and discuss link to type 2 diabetes. PMID: 28931550
  17. IRF5 and IRF5 disease-risk variants increase glycolysis and human m1 macrophage polarization by regulating proximal signaling and Akt2 activation. PMID: 27545875
  18. the direct interaction of AKT2 and EF2 was found to be dynamically regulated in embryonic rat cardiomyocytes PMID: 23823123
  19. Data identify MTSS1 as a new Akt2-regulated gene, and point to suppression of MTSS1 as a key step in the metastasis-promoting effects of Akt2 in CRC cells. PMID: 28068324
  20. Akt2, Erk2, and IKK1/2 phosphorylate Bcl3, converting Bcl3 into a transcriptional coregulator by facilitating its recruitment to DNA. PMID: 28689659
  21. Results indicate that AKT2 modulates pulmonary fibrosis through inducing TGF-beta1 and IL-13 production by macrophages, and inhibition of AKT2 may be a potential strategy for treating Idiopathic pulmonary fibrosis. PMID: 28455433
  22. The p.Glu17Lys mutation of AKT2 confers low-level constitutive activity upon the kinase and produces hypoglycemia with suppressed fatty acid release from adipose tissue, but not fatty liver, hypertriglyceridemia, or elevated hepatic de novo lipogenesis. PMID: 28541532
  23. Studies provide evidence that AKT2 counteracts oxidative-stress-induced apoptosis and is required for alpha-beta thymocyte survival and differentiation. Also, it plays a critical role in antagonizing cardiomyocyte apoptosis. [review] PMID: 26953242
  24. Akt2 role in the human lung cancer cell proliferation, growth, motility, invasion and endothelial cell tube formation PMID: 26234648
  25. This study demonstrates novel regulatory circuits involving miR-148a-3p/ERBB3/AKT2/c-myc and DNMT1 that controls bladder cancer progression, which may be useful in the development of more effective therapies against bladder cancer. PMID: 27906180
  26. Both in our animal model and in human Age-related macular degeneration (AMD), the AKT2-NF-kappaB-LCN-2 signalling axis is involved in activating the inflammatory response. PMID: 28026019
  27. identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes. PMID: 28341696
  28. AKT2 can regulate miR-200a in a histology- or stage-specific manner and this regulation is independent of subsequent involvement of miR-200a in epithelial-mesenchymal transition. PMID: 27189341
  29. Quinoline-type inhibitors bind in the Akt2 PH domain. PMID: 28036396
  30. TGF-beta signaling through Akt2 induces phosphorylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) at serine-43 (p-hnRNP E1), driving epithelial to mesenchymal transition and metastasis. PMID: 27067543
  31. miR-29b plays an important role in TGF-beta1-mediated epithelial-mesenchymal transition in ARPE-19 cells by targeting Akt2. PMID: 25263462
  32. miR-148a functions as tumor suppressor in Renal cell carcinoma by targeting AKT2. PMID: 27878305
  33. MiR-650 could inhibit the proliferation, migration and invasion of rheumatoid arthritis synovial fibroblasts through targeted regulation of AKT2 expression. PMID: 28129626
  34. High AKT2 expression is associated with gallbladder cancer. PMID: 26803515
  35. miR-302b inhibits SMMC-7721 cell invasion and metastasis by targeting AKT2 PMID: 26254095
  36. No association has been found between AKT2 polymorphisms and oesophageal squamous cell carcinoma risk. PMID: 26828791
  37. High AKT2 expression is associated with ovarian cancer. PMID: 26512921
  38. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3beta inactivation in this compartment. PMID: 26711268
  39. controls endothelial Jagged1 expression and, thereby, Notch signalling regulating VSMC maintenance. PMID: 26971877
  40. These studies identify Akt2 as a critical kinase that regulates radixin phosphorylation and leads to Mrp-2 translocation and function. PMID: 26500117
  41. miR-612 directly suppressed AKT2, which in turn inhibited the downstream epithelial-mesenchymal transition-related signaling pathway. PMID: 26158514
  42. the correlation between RLN2 and p-AKT or RLN2 and p-ERK1/2 expression was investigated. PMID: 26229955
  43. the biological effect of Akt2 in colorectal cancer cells PMID: 25134663
  44. miR-137 which is frequently down-regulated in gastric cancer is potentially involved in gastric cancer tumorigenesis and metastasis by regulating AKT2 related signal pathways PMID: 26102366
  45. miR-615-5p inhibits pancreatic cancer cell proliferation, migration, and invasion by targeting AKT2 PMID: 25856297
  46. QSAR based docking studies identify marine algal callophycin A as inhibitor of protein kinase B beta. PMID: 25936945
  47. we assayed expression of myosin II.. this assay is a powerful predictor of the use of ZEB2/Akt2 as a marker for tumor progression in serous ovarian cancers. PMID: 25894377
  48. Up-regulation of AKT2 was associated with chemoresistance in renal cell carcinoma. PMID: 25951903
  49. findings suggested that AKT2 may be one of the targets of miR29s in gastric cancer PMID: 25428377
  50. PIK3CA and AKT2 mutations occurred at low frequency in gastric cancer. PMID: 25771729

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed