Recombinant Human Nad-Dependent Protein Deacetylase Sirtuin-1 (SIRT1) Protein (His)

Beta LifeScience SKU/CAT #: BLC-02944P
Greater than 90% as determined by SDS-PAGE.
Greater than 90% as determined by SDS-PAGE.

Recombinant Human Nad-Dependent Protein Deacetylase Sirtuin-1 (SIRT1) Protein (His)

Beta LifeScience SKU/CAT #: BLC-02944P
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Description Recombinant Human Nad-Dependent Protein Deacetylase Sirtuin-1 (SIRT1) Protein (His) is produced by our E.coli expression system. This is a full length protein.
Purity Greater than 90% as determined by SDS-PAGE.
Uniprotkb Q96EB6
Target Symbol SIRT1
Synonyms 75SirT1; hSIR2; hSIRT1; HST2; HST2, S. cerevisiae, homolog of; NAD dependent deacetylase sirtuin 1; NAD dependent protein deacetylase sirtuin 1; NAD-dependent deacetylase sirtuin-1 ; OTTHUMP00000198111; OTTHUMP00000198112; Regulatory protein SIR2 homolog 1; SIR1_HUMAN; SIR2; SIR2 like 1; SIR2 like protein 1; SIR2, S.cerevisiae, homolog-like 1; SIR2-like protein 1; SIR2ALPHA; SIR2L1; Sirt1; SirtT1 75 kDa fragment; Sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae); Sirtuin 1; Sirtuin type 1
Species Homo sapiens (Human)
Expression System E.coli
Tag N-6His
Target Protein Sequence ADEAALALQPGGSPSAAGADREAASSPAGEPLRKRPRRDGPGLERSPGEPGGAAPEREVPAAARGCPGAAAAALWREAEAEAAAAGGEQEAQATAAAGEGDNGPGLQGPSREPPLADNLYDEDDDDEGEEEEEAAAAAIGYRDNLLFGDEIITNGFHSCESDEEDRASHASSSDWTPRPRIGPYTFVQQHLMIGTDPRTILKDLLPETIPPPELDDMTLWQIVINILSEPPKRKKRKDINTIEDAVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDIEYFRKDPRPFFKFAKEIYPGQFQPSLCHKFIALSDKEGKLLRNYTQNIDTLEQVAGIQRIIQCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEPLAIMKPEIVFFGENLPEQFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIPHEVPQILINREPLPHLHFDVELLGDCDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPRTQKELAYLSELPPTPLHVSEDSSSPERTSPPDSSVIVTLLDQAAKSNDDLDVSESKGCMEEKPQEVQTSRNVESIAEQMENPDLKNVGSSTGEKNERTSVAGTVRKCWPNRVAKEQISRRLDGNQYLFLPPNRYIFHGAEVYSDSEDDVLSSSSCGSNSDSGTCQSPSLEEPMEDESEIEEFYNGLEDEPDVPERAGGAGFGTDGDDQEAINEAISVKQEVTDMNYPSNKS
Expression Range 2-747aa
Protein Length Full Length of Mature Protein
Mol. Weight 85.5kDa
Research Area Epigenetics And Nuclear Signaling
Form Liquid or Lyophilized powder
Buffer Liquid form: default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. Lyophilized powder form: the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%.
Storage 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C.
Notes Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.

Target Details

Target Function NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction.
Subcellular Location Nucleus, PML body. Cytoplasm. Nucleus.; [SirtT1 75 kDa fragment]: Cytoplasm. Mitochondrion.
Protein Families Sirtuin family, Class I subfamily
Database References

HGNC: 14929

OMIM: 604479

KEGG: hsa:23411

STRING: 9606.ENSP00000212015

UniGene: PMID: 28600541

  • I157172 induced upregulation of SIRT1, and downregulation of acetyl-STAT3. PMID: 30365149
  • SIRT1-mediated H3K9 deacetylation helps to maintain gene repression but is not required for the direct ZEB2 repressive function.SIRT1 activity maintains the stability of ZEB2-induced RAB25 repression. PMID: 30445998
  • Data show that long non-coding RNA MALAT1 (MALAT1) repressed sirtuin 1 (SIRT1) expression through targeting forkhead box protein O1 (Foxo1). PMID: 29928873
  • SIRT1 had a pivotally protective role in the regulation of ADSCs aging and apoptosis induced by H2O2 PMID: 29803744
  • plasma levels correlated inversely with all studied adiposity and atherogenicity indices in metabolic syndrome patients with and without prediabetes PMID: 29779969
  • Increased SIRT1 activity protects against diabetes-induced podocyte injury and effectively mitigates the progression of diabetic kidney disease. PMID: 29477240
  • the Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins PMID: 28504272
  • Adipose tissue sirtuin 1 was related to insulin sensitivity. The relationship was still present after controlling for BMI, however, it disappeared after controlling for adipose tissue SLC2A4. Muscle sirtuin 1 was not related to insulin sensitivity. PMID: 29417372
  • data suggest that SIRT1 is an oncogenic factor in breast cancer cells and can be involved in the progression of breast cancer by inhibiting p53 and activating POLD1 PMID: 29807012
  • SIRT1 expression is significantly upregulated in paclitaxel-resistant cervical cancer tissues and cell lines compared to normal tissues or PTX-sensitive CC tissues and cell lines. Knockdown of SIRT1 inhibited the cell proliferation, promoted cell cycle arrest and apoptosis of PTX-sensitive CC cells, and decreased the expression of MDR proteins. PMID: 29808798
  • In our retrospective study, high SIRT1 expression significantly correlated with vascular invasion and a worse prognosis in colorectal cancer PMID: 30082156
  • SIRT1 polymorphisms and their expression were associated with the presence of alcoholic fatty liver disease (AFLD), and there was a close relationship among four SNPs and body mass index in AFLD patients, but no SNP was related to its expression. PMID: 29189974
  • The variable role of SIRT1 in the maintenance and differentiation of mesenchymal stem cells. PMID: 29715067
  • Results indicate that SIRT1 may promote the metastasis of chondrosarcoma by inducing epithelial-mesenchymal transition and can be a potential molecular target for chondrosarcoma therapy. PMID: 28112277
  • Regulation of transmembrane-4-L-six-family-1 (TM4SF1) on bladder cancer cell could be induced by peroxisome proliferator-activated receptor gamma (PPARgamma)-sirtuin 1 (SIRT1) feedback loop. PMID: 29175458
  • Results present evidence that SIRT1 plays an essential role in regulating the transcription of CLDN5 likely by modifying and modulating the activity of KLF4 in ovarian cancer cells. PMID: 28888043
  • results suggest that seminal SIRT1 expression has a role in male infertility PMID: 29359516
  • SIRT1 may promote the transformation of tumor cells by inducing the epithelial-mesenchymal transition. PMID: 29656187
  • relevance of the discovered Sirt1-Smad2 interaction for the regulation of TGFbeta-dependent gene transcription PMID: 29187201
  • Bioinformatics and the dual luciferase reporter assay analysis results demonstrated that miR-29a specifically targeted the 3'-UTR of SIRT1 mRNA and regulated its protein expression. Increased SIRT1 expression rescued the inhibited effects induced by miR-29a overexpression in HCC cells. PMID: 29630527
  • High Sirt1 Expression is associated with Gastric cancer. PMID: 29693338
  • Sirt1 protects against oxidative stress-induced apoptosis in fibroblasts from psoriatic patients. PMID: 29799444
  • Investigated the effect of statins on the expression of sirtuin 1 (SIRT1) and endothelial nitric oxide synthase 3 (eNOS) proteins in young premature myocardial infarction (PMI) patients. Found patients with PMI who were taking statins had a markedly higher level of SIRT1 compared with the controls. The level of eNOS protein was considerably lower in PMI patients compared with the control group. PMID: 29664427
  • Clinical data are the first to identify SIRT1 as an important regulator of hepatocellular function in human liver transplants under ischemia/reperfusion stress. PMID: 28719070
  • suggests SIRT1 may serve as a predictor of poor prognosis in esophageal squamous cell carcinoma, and its mediated tumor-promoting role might be associated with the overexpression of EGFR protein in esophageal squamous cell carcinoma PMID: 29625788
  • findings demonstrate a new mechanism for the activation of SIRT1 under stress conditions and suggest a novel potential therapeutic target for preventing age-related diseases and extending healthspan PMID: 29133780
  • This study represents the important role of Sirt1 and senescence in the regulation of beige adipocyte differentiation during aging. PMID: 29678576
  • Baicalin activated the SIRT1/AMPK and mechanistic target of rapamycin (mTOR), and SIRT1/AMPK and matrix metalloproteinase (MMP) signaling in A549 and H1299 cells in a dose-dependent manner. siRNA silencing of SIRT1 and AMPK reduced the effects of baicalin on cell proliferation and migration. PMID: 29632297
  • We provide a comprehensive overview of recent developments on the molecular signaling pathways controlled by SIRT1 and SIRT6, two post-translational modifiers proven to be valuable tools to dampen inflammation and oxidative stress at the cardiovascular levell PMID: 28661724
  • SIRT1 was identified as a direct target of miR-212 and its expression was inversely correlated with miR-212 expression in thyroid cancer tissues. Overexpression of SIRT1 could effectively rescue miR-212 mimic-induced suppression of cell proliferation, migration and invasion in TPC-1 thyroid cancer cell line. PMID: 29207181
  • The present study is the first to report a significant association between SIRT1 polymorphisms and antisocial personality in adolescents. PMID: 28439078
  • Studied effects of dexamethasone on gene expression regulation of sirtuin 1 (SIRT1), interleukin 6 (IL6), and endothelin 1 (EDN1) in gingival derived aging stem cells. Dexamethasone downregulated expression of SIRT1 and IL6 but upregulated EDN1 in stem cells. PMID: 29302812
  • miR-200a and its target gene, SIRT1, may exert a possible role in induction of apoptosis in dopaminergic neurons. PMID: 29936262
  • The rhuschalcone I analogue (9) showed the best activity against sirt1, with an IC50 value of 40.8 microM. Based on the docking experiments, suggestions for improving the biological activities of the newly identified hit compounds have been provided. PMID: 29443909
  • Results indicated that SIRT1 contributes to the neuroprotection of salidroside against MPP(+) -induced apoptosis and oxidative stress, in part through suppressing of mitogen-activated protein kinase (MAPK) pathways. PMID: 28851138
  • decreased SIRT1 expression and its SUMOylation by SUMO1 and SUMO2/3 may be associated with the development of bronchopulmonary dysplasia. PMID: 29115559
  • The nicotinamide adenine dinucleotide (NAD)-dependent deacetylase SIRT1 acts as an energy sensor and negatively regulates poly(A)RNA transport via deacetylating a poly(A)-binding protein, PABP1. PMID: 28756945
  • L-Carnitine alleviated epithelial mesenchymal transformation-associated renal fibrosis caused by perfluorooctanesulfonate through a Sirt1- and PPARgamma-dependent mechanism. PMID: 28973641
  • High SIRT1 expression is associated with hepatocellular carcinoma. PMID: 28677784
  • No significant association has been discovered between SIRT1 polymorphisms and diabetic foot severity or characteristics PMID: 29995800
  • A significant correlation between the physical activity level and peripheral blood mononuclear cell SIRT1 and FOXO1 mRNA expression was found in COPD patients. PMID: 29138552
  • Defective sirtuin-1 was found to increase IL-4 expression through acetylation of GATA-3 in patients with severe asthma compared with healthy controls. PMID: 26627546
  • SIRT1 gene polymorphisms can have direct and indirect effects on the pathogenesis of coronary artery diseases. PMID: 29885463
  • miR-146 exerted protective functions might be via up-regulation of Sirt1 thereby blocking NF-kappaB and Notch pathways. PMID: 29229881
  • results suggested that SIRT1 deficiency in Bladder cancer cells could suppress cell viability by activating antioxidant response and inducing cell cycle arrest possibly via FOXO3a-related pathways. PMID: 29147649
  • These observations provide further evidence for a critical tumor-suppressive role of the miR-200a in renal cell carcinoma (RCC) in addition to identifying a novel regulatory mechanism, which may contribute to SIRT1 upregulation in RCC. PMID: 28717923
  • Results showed that RSV or overexpression of SIRT1 elicited inhibitory effects on NMDA-induced excitotoxicity including a decrease in cell viability, an increase in lactate dehydrogenase (LDH) release, and a decrease in the number of living cells as measured by CCK-8 assay, LDH test, and Calcein-AM and PI double staining. PMID: 29081884
  • results indicate that FOXO1 inhibits gastric cancer (GC) growth and angiogenesis under hypoxic conditions via inactivation of the HIF-1alpha-VEGF pathway, possibly in association with SIRT1; thus, development of treatment modalities aiming at this pathway might be useful for treating GC PMID: 25761483
  • Data suggest the activity restoration role of resveratrol toward some "loose-binding" substrates of sirtuin 1 (SIRT1), and has implications for the rational design of new substrate-specific SIRT1 modulators. PMID: 27901083
  • FAQs

    Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

    Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

    Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

    Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

    Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

    Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

    To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

    Recently viewed