Recombinant Human Humanin (MT-RNR2) Protein (GST)
Beta LifeScience
SKU/CAT #: BLC-01847P

Greater than 85% as determined by SDS-PAGE.
Recombinant Human Humanin (MT-RNR2) Protein (GST)
Beta LifeScience
SKU/CAT #: BLC-01847P
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.
Product Overview
Description | Recombinant Human Humanin (MT-RNR2) Protein (GST) is produced by our E.coli expression system. This is a full length protein. |
Purity | Greater than 85% as determined by SDS-PAGE. |
Uniprotkb | Q8IVG9 |
Target Symbol | MT-RNR2 |
Synonyms | Humanin mitochondrial |
Species | Homo sapiens (Human) |
Expression System | E.coli |
Tag | N-GST |
Target Protein Sequence | MAPRGFSCLLLLTSEIDLPVKRRA |
Expression Range | 1-24aa |
Protein Length | Full Length |
Mol. Weight | 29.4 kDa |
Research Area | Others |
Form | Liquid or Lyophilized powder |
Buffer | Liquid form: default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. Lyophilized powder form: the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0. |
Reconstitution | Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%. |
Storage | 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C. |
Notes | Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week. |
Target Details
Target Function | Plays a role as a neuroprotective factor. Protects against neuronal cell death induced by multiple different familial Alzheimer disease genes and amyloid-beta proteins in Alzheimer disease. Mediates its neuroprotective effect by interacting with a receptor complex composed of IL6ST/GP130, IL27RA/WSX1 and CNTFR. Also acts as a ligand for G-protein coupled receptors FPR2/FPRL1 and FPR3/FPRL2. Inhibits amyloid-beta protein 40 fibril formation. Also inhibits amyloid-beta protein 42 fibril formation. Suppresses apoptosis by binding to BAX and preventing the translocation of BAX from the cytosol to mitochondria. Also suppresses apoptosis by binding to BID and inhibiting the interaction of BID with BAX and BAK which prevents oligomerization of BAX and BAK and suppresses release of apoptogenic proteins from mitochondria. Forms fibers with BAX and also with BID, inducing BAX and BID conformational changes and sequestering them into the fibers which prevents their activation. Can also suppress apoptosis by interacting with BIM isoform BimEL, inhibiting BimEL-induced activation of BAX, blocking oligomerization of BAX and BAK, and preventing release of apoptogenic proteins from mitochondria. Plays a role in up-regulation of anti-apoptotic protein BIRC6/APOLLON, leading to inhibition of neuronal cell death. Binds to IGFBP3 and specifically blocks IGFBP3-induced cell death. Competes with importin KPNB1 for binding to IGFBP3 which is likely to block IGFBP3 nuclear import. Induces chemotaxis of mononuclear phagocytes via FPR2/FPRL1. Reduces aggregation and fibrillary formation by suppressing the effect of APP on mononuclear phagocytes and acts by competitively inhibiting the access of FPR2 to APP. Protects retinal pigment epithelium (RPE) cells against oxidative stress-induced and endoplasmic reticulum (ER) stress-induced apoptosis. Promotes mitochondrial biogenesis in RPE cells following oxidative stress and promotes STAT3 phosphorylation which leads to inhibition of CASP3 release. Also reduces CASP4 levels in RPE cells, suppresses ER stress-induced mitochondrial superoxide production and plays a role in up-regulation of mitochondrial glutathione. Reduces testicular hormone deprivation-induced apoptosis of germ cells at the nonandrogen-sensitive stages of the seminiferous epithelium cycle. Protects endothelial cells against free fatty acid-induced inflammation by suppressing oxidative stress, reducing expression of TXNIP and inhibiting activation of the NLRP3 inflammasome which inhibits expression of proinflammatory cytokines IL1B and IL18. Protects against high glucose-induced endothelial cell dysfunction by mediating activation of ERK5 which leads to increased expression of transcription factor KLF2 and prevents monocyte adhesion to endothelial cells. Inhibits the inflammatory response in astrocytes. Increases the expression of PPARGC1A/PGC1A in pancreatic beta cells which promotes mitochondrial biogenesis. Increases insulin sensitivity. |
Subcellular Location | Secreted. Cytoplasm. Cell projection, cilium, flagellum. Nucleus. Mitochondrion. |
Protein Families | Humanin family |
Database References | |
Tissue Specificity | Expressed in testis, seminal plasma and sperm (at protein level). Higher seminal plasma levels are associated with normospermia than with oligospermia, asthenospermia or oligoasthenospermia (at protein level). Higher sperm levels are associated with normo |