Human HSD17B10 (3-Hydroxyacyl-Coa Dehydrogenase Type-2) - Recombinant Protein
Beta LifeScience
SKU/CAT #: BLT-01427P

SDS-PAGE analysis of Human HSD17B10 (3-Hydroxyacyl-Coa Dehydrogenase Type-2) - Recombinant Protein, CAT# BLT-01427P, showing >90% purity under 15% SDS-PAGE (Reduced)
Human HSD17B10 (3-Hydroxyacyl-Coa Dehydrogenase Type-2) - Recombinant Protein
Beta LifeScience
SKU/CAT #: BLT-01427P
Regular price
$59500
$595.00
Sale price$44500
$445.00Save $150
/
Quantity Pricing
Pack Size | Price (USD) |
---|---|
500 µg | $1,030 (Fall Promotion) |
1 mg | $1,870 (Fall Promotion) |
For direct online orders, quantity pricing will be displayed in cart when you add 5x100ug or 10x100ug
Submit an inquiry or email inquiry@betalifesci.com for a customization request or bulk order quote.
Connect with us via the live chat in the bottom corner to receive immediate assistance.
Product Overview
Product Name | Recombinant Human HSD17B10 Protein |
Product Overview | This recombinant human HSD17B10 protein includes amino acids 12-261aa of the target gene is expressed in E.coli.The protein is supplied in lyophilized form and formulated in phosphate buffered saline (pH7.4) containing 0.01% sarcosyl, 5% trehaloseprior to lyophilization. |
Target Uniprot Id | Q99714 |
Recommended Name | 3-hydroxyacyl-CoA dehydrogenase type-2 |
Gene Name | HSD17B10 |
Synonyms | 3-hydroxyacyl-CoA dehydrogenase type-2, 17b-HSD10, ABAD, CAMR, DUPXp11.22, ERAB, HADH2, HCD2, MHBD, |
Species | Human |
Predicted Molecular Mass | 28.1 kDa |
Expression System | E.coli |
Expression Range | 12-261aa |
Tag | N-6His |
Purity | >90% |
Formulation | Lyophilized |
Buffer | Phosphate buffered saline (pH7.4) containing 0.01% sarcosyl, 5%Trehalose |
Storage Condition | 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C. |
Reconstitution Instruction | Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%. |
Applications | Positive Control; Immunogen; SDS-PAGE; WB |
Research Area | Transcription |
Target Function | Mitochondrial dehydrogenase involved in pathways of fatty acid, branched-chain amino acid and steroid metabolism. Acts as (S)-3-hydroxyacyl-CoA dehydrogenase in mitochondrial fatty acid beta-oxidation, a major degradation pathway of fatty acids. Catalyzes the third step in the beta-oxidation cycle, namely the reversible conversion of (S)-3-hydroxyacyl-CoA to 3-ketoacyl-CoA. Preferentially accepts straight medium- and short-chain acyl-CoA substrates with highest efficiency for (3S)-hydroxybutanoyl-CoA. Acts as 3-hydroxy-2-methylbutyryl-CoA dehydrogenase in branched-chain amino acid catabolic pathway. Catalyzes the oxidation of 3-hydroxy-2-methylbutanoyl-CoA into 2-methyl-3-oxobutanoyl-CoA, a step in isoleucine degradation pathway. Has hydroxysteroid dehydrogenase activity toward steroid hormones and bile acids. Catalyzes the oxidation of 3alpha-, 17beta-, 20beta- and 21-hydroxysteroids and 7alpha- and 7beta-hydroxy bile acids. Oxidizes allopregnanolone/brexanolone at the 3alpha-hydroxyl group, which is known to be critical for the activation of gamma-aminobutyric acid receptors (GABAARs) chloride channel. Has phospholipase C-like activity toward cardiolipin and its oxidized species. Likely oxidizes the 2'-hydroxyl in the head group of cardiolipin to form a ketone intermediate that undergoes nucleophilic attack by water and fragments into diacylglycerol, dihydroxyacetone and orthophosphate. Has higher affinity for cardiolipin with oxidized fatty acids and may degrade these species during the oxidative stress response to protect cells from apoptosis. By interacting with intracellular amyloid-beta, it may contribute to the neuronal dysfunction associated with Alzheimer disease (AD). Essential for structural and functional integrity of mitochondria.; In addition to mitochondrial dehydrogenase activity, moonlights as a component of mitochondrial ribonuclease P, a complex that cleaves tRNA molecules in their 5'-ends. Together with TRMT10C/MRPP1, forms a subcomplex of the mitochondrial ribonuclease P, named MRPP1-MRPP2 subcomplex, which displays functions that are independent of the ribonuclease P activity. The MRPP1-MRPP2 subcomplex catalyzes the formation of N(1)-methylguanine and N(1)-methyladenine at position 9 (m1G9 and m1A9, respectively) in tRNAs; HSD17B10/MRPP2 acting as a non-catalytic subunit. The MRPP1-MRPP2 subcomplex also acts as a tRNA maturation platform: following 5'-end cleavage by the mitochondrial ribonuclease P complex, the MRPP1-MRPP2 subcomplex enhances the efficiency of 3'-processing catalyzed by ELAC2, retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA tRNA nucleotidyltransferase TRNT1 enzyme. Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly. |
Subcellular Location | Mitochondrion. Mitochondrion matrix, mitochondrion nucleoid. |
Protein Family | Short-chain dehydrogenases/reductases (SDR) family |
Associated Diseases | HDS10 mitochondrial disease (HSD10MD); Mental retardation, X-linked 17 (MRX17) |
Tissue Specificity | Ubiquitously expressed in normal tissues but is overexpressed in neurons affected in AD. |