Human HAVCR2 (Hepatitis A Virus Cellular Receptor 2) - Recombinant Protein

Beta LifeScience SKU/CAT #: BLT-07827P
SDS-PAGE analysis of Human HAVCR2 (Hepatitis A Virus Cellular Receptor 2) - Recombinant Protein, CAT
SDS-PAGE analysis of Human HAVCR2 (Hepatitis A Virus Cellular Receptor 2) - Recombinant Protein, CAT# BLT-07827P, showing >90% purity under 15% SDS-PAGE (Reduced)

Human HAVCR2 (Hepatitis A Virus Cellular Receptor 2) - Recombinant Protein

Beta LifeScience SKU/CAT #: BLT-07827P
Regular price $595.00 Sale price $445.00Save $150
/
Size

Quantity Pricing

Pack Size Price (USD)
500 µg $1,030 (Fall Promotion)
1 mg $1,870 (Fall Promotion)

For direct online orders, quantity pricing will be displayed in cart when you add 5x100ug or 10x100ug


Submit an inquiry or email inquiry@betalifesci.com for a customization request or bulk order quote.

Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Product Name Recombinant Human Hepatitis A Virus Cellular Receptor 2 (HAVCR2) Protein
Product Overview This recombinant human Hepatitis A Virus Cellular Receptor 2 (HAVCR2) protein includes amino acids 22-200aa of the target gene is expressed in 293F cell.The protein is supplied in lyophilized form and formulated in PBSprior to lyophilization.
Target Uniprot Id Q8TDQ0
Recommended Name Hepatitis A virus cellular receptor 2
Gene Name HAVCR2
Synonyms KIM-3; TIM3; TIMD3; Tim-3; T-cell membrane protein 3; T-cell immunoglobulin mucin receptor 3; T-cell
Species Human
Predicted Molecular Mass 80 kDa
Expression System Mammalian Cell
Expression Range 22-200aa
Tag C-6His-Fc
Purity >90%
Formulation Lyophilized
Buffer PBS
Storage Condition 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C.
Reconstitution Instruction Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%.
Applications Positive Control; Immunogen; SDS-PAGE; WB
Research Area Immunology
Target Function Cell surface receptor implicated in modulating innate and adaptive immune responses. Generally accepted to have an inhibiting function. Reports on stimulating functions suggest that the activity may be influenced by the cellular context and/or the respective ligand. Regulates macrophage activation. Inhibits T-helper type 1 lymphocyte (Th1)-mediated auto- and alloimmune responses and promotes immunological tolerance. In CD8+ cells attenuates TCR-induced signaling, specifically by blocking NF-kappaB and NFAT promoter activities resulting in the loss of IL-2 secretion. The function may implicate its association with LCK proposed to impair phosphorylation of TCR subunits, and/or LGALS9-dependent recruitment of PTPRC to the immunological synapse. In contrast, shown to activate TCR-induced signaling in T-cells probably implicating ZAP70, LCP2, LCK and FYN. Expressed on Treg cells can inhibit Th17 cell responses. Receptor for LGALS9. Binding to LGALS9 is believed to result in suppression of T-cell responses; the resulting apoptosis of antigen-specific cells may implicate HAVCR2 phosphorylation and disruption of its association with BAG6. Binding to LGALS9 is proposed to be involved in innate immune response to intracellular pathogens. Expressed on Th1 cells interacts with LGALS9 expressed on Mycobacterium tuberculosis-infected macrophages to stimulate antibactericidal activity including IL-1 beta secretion and to restrict intracellular bacterial growth. However, the function as receptor for LGALS9 has been challenged. Also reported to enhance CD8+ T-cell responses to an acute infection such as by Listeria monocytogenes. Receptor for phosphatidylserine (PtSer); PtSer-binding is calcium-dependent. May recognize PtSer on apoptotic cells leading to their phagocytosis. Mediates the engulfment of apoptotic cells by dendritic cells. Expressed on T-cells, promotes conjugation but not engulfment of apoptotic cells. Expressed on dendritic cells (DCs) positively regulates innate immune response and in synergy with Toll-like receptors promotes secretion of TNF-alpha. In tumor-imfiltrating DCs suppresses nucleic acid-mediated innate immune repsonse by interaction with HMGB1 and interfering with nucleic acid-sensing and trafficking of nucleid acids to endosomes. Expressed on natural killer (NK) cells acts as a coreceptor to enhance IFN-gamma production in response to LGALS9. In contrast, shown to suppress NK cell-mediated cytotoxicity. Negatively regulates NK cell function in LPS-induced endotoxic shock.
Subcellular Location Membrane; Single-pass type I membrane protein. Cell junction. Cell membrane.
Protein Family Immunoglobulin superfamily, TIM family
Associated Diseases May be involved in T-cell exhaustion associated with chronic viral infections such as with human immunodeficiency virus (HIV) and hepatitic C virus (HCV).
Tissue Specificity Expressed in T-helper type 1 (Th1) lymphocytes. Expressed on regulatory T (Treg) cells after TCR stimulation. Expressed in dendritic cells and natural killer (NK) cells. Expressed in epithelial tissues. Expression is increased on CD4+ and CD8+ T-cells in

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed