Recombinant Human Dna Repair Protein Complementing Xp-C Cells (XPC) Protein (His)
Beta LifeScience
SKU/CAT #: BLC-03121P

Greater than 90% as determined by SDS-PAGE.

Based on the SEQUEST from database of E.coli host and target protein, the LC-MS/MS Analysis result of this product could indicate that this peptide derived from E.coli-expressed Homo sapiens (Human) XPC.

Based on the SEQUEST from database of E.coli host and target protein, the LC-MS/MS Analysis result of this product could indicate that this peptide derived from E.coli-expressed Homo sapiens (Human) XPC.
Recombinant Human Dna Repair Protein Complementing Xp-C Cells (XPC) Protein (His)
Beta LifeScience
SKU/CAT #: BLC-03121P
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.
Product Overview
Description | Recombinant Human Dna Repair Protein Complementing Xp-C Cells (XPC) Protein (His) is produced by our E.coli expression system. This is a protein fragment. |
Purity | Greater than 90% as determined by SDS-PAGE. |
Uniprotkb | Q01831 |
Target Symbol | XPC |
Synonyms | DNA repair protein complementing XP C cells; DNA repair protein complementing XP-C cells; DNA repair protein complementing XPC cells; p125; RAD4; Xeroderma pigmentosum complementation group C; Xeroderma pigmentosum group C complementing protein; Xeroderma pigmentosum group C protein; Xeroderma pigmentosum group C-complementing protein; Xeroderma pigmentosum group III; XP 3; XP C; XP group C; XP3; Xpc; XPC gene; XPC_HUMAN; XPCC |
Species | Homo sapiens (Human) |
Expression System | E.coli |
Tag | N-6His |
Target Protein Sequence | SLPAASSSSSSSKRGKKMCSDGEKAEKRSIAGIDQWLEVFCEQEEKWVCVDCVHGVVGQPLTCYKYATKPMTYVVGIDSDGWVRDVTQRYDPVWMTVTRKCRVDAEWWAETLRPYQSPFMDREKKEDLEFQAKHMDQPLPTAIGLYKNHPLYALKRHLLKYEAIYPETAAILGYCRGEAVYSRDCVHTLHSRDTWLKKARVVRLGEVPYKMVKGFSNRARKARLAEPQLREENDLGLFG |
Expression Range | 496-734aa |
Protein Length | Partial |
Mol. Weight | 31.5kDa |
Research Area | Epigenetics And Nuclear Signaling |
Form | Liquid or Lyophilized powder |
Buffer | Liquid form: default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. Lyophilized powder form: the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0. |
Reconstitution | Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%. |
Storage | 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C. |
Notes | Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week. |
Target Details
Target Function | Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex. Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides. This feature is proposed to be related to a dynamic sensor XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts. XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1.; In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes. |
Subcellular Location | Nucleus. Chromosome. Cytoplasm. |
Protein Families | XPC family |
Database References | HGNC: 12816 OMIM: 278720 KEGG: hsa:7508 STRING: 9606.ENSP00000285021 UniGene: PMID: 29973595 |