Human CHMP5 (Charged Multivesicular Body Protein 5) - Recombinant Protein

Beta LifeScience SKU/CAT #: BLT-00593P
SDS-PAGE analysis of Human CHMP5 (Charged Multivesicular Body Protein 5) - Recombinant Protein, CAT
SDS-PAGE analysis of Human CHMP5 (Charged Multivesicular Body Protein 5) - Recombinant Protein, CAT# BLT-00593P, showing >85% purity under 15% SDS-PAGE (Reduced)

Human CHMP5 (Charged Multivesicular Body Protein 5) - Recombinant Protein

Beta LifeScience SKU/CAT #: BLT-00593P
Regular price $595.00 Sale price $445.00Save $150
/
Size

Quantity Pricing

Pack Size Price (USD)
500 µg $1,030 (Fall Promotion)
1 mg $1,870 (Fall Promotion)

For direct online orders, quantity pricing will be displayed in cart when you add 5x100ug or 10x100ug


Submit an inquiry or email inquiry@betalifesci.com for a customization request or bulk order quote.

Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Product Name Recombinant Human CHMP5 Protein
Product Overview This recombinant human CHMP5 protein includes amino acids 1-219aa of the target gene is expressed in E.coli.The protein is supplied in lyophilized form and formulated in phosphate buffered saline (pH7.4) containing 0.01% sarcosyl, 5% trehaloseprior to lyophilization.
Target Uniprot Id Q9NZZ3
Recommended Name Charged multivesicular body protein 5
Gene Name CHMP5
Synonyms Charged multivesicular body protein 5, C9orf83, CGI-34, HSPC177, PNAS-2, SNF7DC2, Vps60.
Species Human
Predicted Molecular Mass 27 kDa
Expression System E.coli
Expression Range 1-219aa
Tag N-6His
Purity >85%
Formulation Lyophilized
Buffer Phosphate buffered saline (pH7.4) containing 0.01% sarcosyl, 5%Trehalose
Storage Condition 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C.
Reconstitution Instruction Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%.
Applications Positive Control; Immunogen; SDS-PAGE; WB
Research Area Transport
Target Function Probable peripherally associated component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. Involved in HIV-1 p6- and p9-dependent virus release.
Subcellular Location Cytoplasm, cytosol. Endosome membrane; Peripheral membrane protein. Note=Localizes to the midbody of dividing cells. Localized in two distinct rings on either side of the Fleming body.
Protein Family SNF7 family

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed