Human CEACAM1 (Cell Adhesion Molecule Ceacam1) - Recombinant Protein

Beta LifeScience SKU/CAT #: BLT-07761P
SDS-PAGE analysis of Human CEACAM1 (Cell Adhesion Molecule Ceacam1) - Recombinant Protein, CAT
SDS-PAGE analysis of Human CEACAM1 (Cell Adhesion Molecule Ceacam1) - Recombinant Protein, CAT# BLT-07761P, showing >90% purity under 15% SDS-PAGE (Reduced)

Human CEACAM1 (Cell Adhesion Molecule Ceacam1) - Recombinant Protein

Beta LifeScience SKU/CAT #: BLT-07761P
Regular price $595.00 Sale price $445.00Save $150
/
Size

Quantity Pricing

Pack Size Price (USD)
500 µg $1,030 (Fall Promotion)
1 mg $1,870 (Fall Promotion)

For direct online orders, quantity pricing will be displayed in cart when you add 5x100ug or 10x100ug


Submit an inquiry or email inquiry@betalifesci.com for a customization request or bulk order quote.

Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Product Name Recombinant Human Carcinoembryonic Antigen Related Cell Adhesion Molecule 1 (CEACAM1) Protein
Product Overview This recombinant human Carcinoembryonic Antigen Related Cell Adhesion Molecule 1 (CEACAM1) protein includes amino acids 35-321aa of the target gene is expressed in E.coli.The protein is supplied in lyophilized form and formulated in PBSprior to lyophilization.
Target Uniprot Id P13688
Recommended Name Cell adhesion molecule CEACAM1
Gene Name CEACAM1
Synonyms CD66a; BGP; BGP1; BGPI; CD66-A; Biliary Glycoprotein
Species Human
Predicted Molecular Mass 33 kDa
Expression System E.coli
Expression Range 35-321aa
Tag N-6His
Purity >90%
Formulation Lyophilized
Buffer PBS
Storage Condition 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C.
Reconstitution Instruction Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%.
Applications Positive Control; Immunogen; SDS-PAGE; WB
Research Area Tags & Cell Markers
Target Function Cell adhesion protein that mediates homophilic cell adhesion in a calcium-independent manner. Plays a role as coinhibitory receptor in immune response, insulin action and functions also as an activator during angiogenesis. Its coinhibitory receptor function is phosphorylation- and PTPN6 -dependent, which in turn, suppress signal transduction of associated receptors by dephosphorylation of their downstream effectors. Plays a role in immune response, of T cells, natural killer (NK) and neutrophils. Upon TCR/CD3 complex stimulation, inhibits TCR-mediated cytotoxicity by blocking granule exocytosis by mediating homophilic binding to adjacent cells, allowing interaction with and phosphorylation by LCK and interaction with the TCR/CD3 complex which recruits PTPN6 resulting in dephosphorylation of CD247 and ZAP70. Also inhibits T cell proliferation and cytokine production through inhibition of JNK cascade and plays a crucial role in regulating autoimmunity and anti-tumor immunity by inhibiting T cell through its interaction with HAVCR2. Upon natural killer (NK) cells activation, inhibit KLRK1-mediated cytolysis of CEACAM1-bearing tumor cells by trans-homophilic interactions with CEACAM1 on the target cell and lead to cis-interaction between CEACAM1 and KLRK1, allowing PTPN6 recruitment and then VAV1 dephosphorylation. Upon neutrophils activation negatively regulates IL1B production by recruiting PTPN6 to a SYK-TLR4-CEACAM1 complex, that dephosphorylates SYK, reducing the production of reactive oxygen species (ROS) and lysosome disruption, which in turn, reduces the activity of the inflammasome. Downregulates neutrophil production by acting as a coinhibitory receptor for CSF3R by downregulating the CSF3R-STAT3 pathway through recruitment of PTPN6 that dephosphorylates CSF3R. Also regulates insulin action by promoting INS clearance and regulating lipogenesis in liver through regulating insulin signaling. Upon INS stimulation, undergoes phosphorylation by INSR leading to INS clearance by increasing receptor-mediated insulin endocytosis. This inernalization promotes interaction with FASN leading to receptor-mediated insulin degradation and to reduction of FASN activity leading to negative regulation of fatty acid synthesis. INSR-mediated phosphorylation also provokes a down-regulation of cell proliferation through SHC1 interaction resulting in decrease coupling of SHC1 to the MAPK3/ERK1-MAPK1/ERK2 and phosphatidylinositol 3-kinase pathways. Functions as activator in angiogenesis by promoting blood vessel remodeling through endothelial cell differentiation and migration and in arteriogenesis by increasing the number of collateral arteries and collateral vessel calibers after ischemia. Also regulates vascular permeability through the VEGFR2 signaling pathway resulting in control of nitric oxide production. Downregulates cell growth in response to EGF through its interaction with SHC1 that mediates interaction with EGFR resulting in decrease coupling of SHC1 to the MAPK3/ERK1-MAPK1/ERK2 pathway. Negatively regulates platelet aggregation by decreasing platelet adhesion on type I collagen through the GPVI-FcRgamma complex. Inhibits cell migration and cell scattering through interaction with FLNA; interfers with the interaction of FLNA with RALA. Mediates bile acid transport activity in a phosphorylation dependent manner. Negatively regulates osteoclastogenesis.; Cell adhesion protein that mediates homophilic cell adhesion in a calcium-independent manner. Promotes populations of T cells regulating IgA production and secretion associated with control of the commensal microbiota and resistance to enteropathogens.
Subcellular Location [Isoform 1]: Cell membrane; Single-pass type I membrane protein. Lateral cell membrane. Apical cell membrane. Basal cell membrane. Cell junction. Cell junction, adherens junction.; [Isoform 2]: Secreted.; [Isoform 3]: Secreted.; [Isoform 4]: Secreted.; [Isoform 5]: Cell membrane; Single-pass type I membrane protein.; [Isoform 6]: Cell membrane; Single-pass type I membrane protein.; [Isoform 7]: Cell membrane; Single-pass type I membrane protein.; [Isoform 8]: Cell membrane; Single-pass type I membrane protein. Cytoplasmic vesicle, secretory vesicle membrane. Lateral cell membrane. Apical cell membrane. Basal cell membrane. Cell junction. Cell junction, adherens junction.; Cell projection, microvillus membrane; Single-pass type I membrane protein. Apical cell membrane; Single-pass type I membrane protein.
Protein Family Immunoglobulin superfamily, CEA family
Tissue Specificity Expressed in columnar epithelial cells of the colon (at protein level). The predominant forms expressed by T cells are those containing a long cytoplasmic domain. Expressed in granulocytes and lymphocytes. Leukocytes only express isoforms 6 and isoform 1.

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed