Recombinant Bovine Protein S100-A9 (S100A9) Protein (His-B2M&Myc)

Beta LifeScience SKU/CAT #: BLC-08042P
Greater than 85% as determined by SDS-PAGE.
Greater than 85% as determined by SDS-PAGE.

Recombinant Bovine Protein S100-A9 (S100A9) Protein (His-B2M&Myc)

Beta LifeScience SKU/CAT #: BLC-08042P
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Description Recombinant Bovine Protein S100-A9 (S100A9) Protein (His-B2M&Myc) is produced by our E.coli expression system. This is a full length protein.
Purity Greater than 85% as determined by SDS-PAGE.
Uniprotkb P28783
Target Symbol S100A9
Synonyms S100A9; Protein S100-A9; BEE22; Calgranulin-B; Neutrophil cytosolic 23 kDa protein; p23; S100 calcium-binding protein A9
Species Bos taurus (Bovine)
Expression System E.coli
Tag N-10His-B2M&C-Myc
Target Protein Sequence EDKMSQMESSIETIINIFHQYSVRLGHYDTLIQKEFKQLVQKELPNFLKKQKKNEAAINEIMEDLDTNVDKQLSFEEFIMLVARLTVASHEEMHNTAPPGQGHRHGPGYGKGGSGSCSGQGSPDQGSHDLGSHGHGHGHSHGGHGHSHGGHGHSH
Expression Range 2-156aa
Protein Length Full Length of Mature Protein
Mol. Weight 34.0 kDa
Research Area Immunology
Form Liquid or Lyophilized powder
Buffer Liquid form: default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. Lyophilized powder form: the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution Briefly centrifuged the vial prior to opening to bring the contents to the bottom. Reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL. It is recommended to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. The default final concentration of glycerol is 50%.
Storage 1. Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. 2. Avoid repeated freeze-thaw cycles. 3. Store working aliquots at 4°C for up to one week. 4. In general, protein in liquid form is stable for up to 6 months at -20°C/-80°C. Protein in lyophilized powder form is stable for up to 12 months at -20°C/-80°C.
Notes Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.

Target Details

Target Function S100A9 is a calcium- and zinc-binding protein which plays a prominent role in the regulation of inflammatory processes and immune response. It can induce neutrophil chemotaxis, adhesion, can increase the bactericidal activity of neutrophils by promoting phagocytosis via activation of SYK, PI3K/AKT, and ERK1/2 and can induce degranulation of neutrophils by a MAPK-dependent mechanism. Predominantly found as calprotectin (S100A8/A9) which has a wide plethora of intra- and extracellular functions. The intracellular functions include: facilitating leukocyte arachidonic acid trafficking and metabolism, modulation of the tubulin-dependent cytoskeleton during migration of phagocytes and activation of the neutrophilic NADPH-oxidase. Activates NADPH-oxidase by facilitating the enzyme complex assembly at the cell membrane, transferring arachidonic acid, an essential cofactor, to the enzyme complex and S100A8 contributes to the enzyme assembly by directly binding to NCF2/P67PHOX. The extracellular functions involve proinflammatory, antimicrobial, oxidant-scavenging and apoptosis-inducing activities. Its proinflammatory activity includes recruitment of leukocytes, promotion of cytokine and chemokine production, and regulation of leukocyte adhesion and migration. Acts as an alarmin or a danger associated molecular pattern (DAMP) molecule and stimulates innate immune cells via binding to pattern recognition receptors such as Toll-like receptor 4 (TLR4) and receptor for advanced glycation endproducts (AGER). Binding to TLR4 and AGER activates the MAP-kinase and NF-kappa-B signaling pathways resulting in the amplification of the proinflammatory cascade. Has antimicrobial activity towards bacteria and fungi and exerts its antimicrobial activity probably via chelation of Zn(2+) which is essential for microbial growth. Can induce cell death via autophagy and apoptosis and this occurs through the cross-talk of mitochondria and lysosomes via reactive oxygen species (ROS) and the process involves BNIP3. Can regulate neutrophil number and apoptosis by an anti-apoptotic effect; regulates cell survival via ITGAM/ITGB and TLR4 and a signaling mechanism involving MEK-ERK. Its role as an oxidant scavenger has a protective role in preventing exaggerated tissue damage by scavenging oxidants. The iNOS-S100A8/A9 transnitrosylase complex is proposed to direct selective inflammatory stimulus-dependent S-nitrosylation of multiple targets such as GAPDH, NXA5, EZR, MSN and VIM by recognizing a [IL]-x-C-x-x-[DE] motif.
Subcellular Location Secreted. Cytoplasm. Cytoplasm, cytoskeleton. Cell membrane; Peripheral membrane protein.
Protein Families S-100 family
Database References
Tissue Specificity Found essentially in phagocytic cells.

Gene Functions References

  1. study of nonsynonymous DNA variation in the functional domain of the S100A7, -A8, -A9 genes in taurine cattle and yak PMID: 29774569
  2. Data suggest that up-regulation of S100A8 and S100A9 is a key component of early endometrial response to uterine involution in the post-partum period and to prevent chronic endometritis/uterine inflammation; up-regulation can be influenced by diet. PMID: 23533291

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed