Recombinant Mouse Tau Protein (His tag)

Beta LifeScience SKU/CAT #: BLA-10108P

Recombinant Mouse Tau Protein (His tag)

Beta LifeScience SKU/CAT #: BLA-10108P
Our products are highly customizable to meet your specific needs. You can choose options such as endotoxin removal, liquid or lyophilized forms, preferred tags, and the desired functional sequence range for proteins. Submitting a written inquiry expedites the quoting process.

Submit an inquiry today to inquire about all available size options and prices! Connect with us via the live chat in the bottom corner to receive immediate assistance.

Product Overview

Host Species Mouse
Accession P10637
Synonym AI413597 AW045860 DDPAC FLJ31424 FTDP 17 G protein beta1/gamma2 subunit interacting factor 1 MAPT MAPTL MGC134287 MGC138549 MGC156663 Microtubule associated protein tau Microtubule associated protein tau isoform 4 Microtubule-associated protein tau MSTD Mtapt MTBT1 MTBT2 Neurofibrillary tangle protein Paired helical filament tau Paired helical filament-tau PHF tau PHF-tau PPND PPP1R103 Protein phosphatase 1, regulatory subunit 103 pTau RNPTAU TAU TAU_HUMAN Tauopathy and respiratory failure Tauopathy and respiratory failure, included
Description Recombinant Mouse Tau Protein (His tag) was expressed in Yeast. It is a Full length protein
Source Yeast
AA Sequence ADPRQEFDTMEDHAGDYTLLQDQEGDMDHGLKESPPQPPADDGAEEPGSE TSDAKSTPTAEDVTAPLVDERAPDKQAAAQPHTEIPEGITAEEAGIGDTP NQEDQAAGHVTQGRREGQAPDLGTSDWTRQQVSSMSGAPLLPQGLREATC QPSGTRPEDIEKSHPASELLRRGPPQKEGWGQDRLGSEEEVDEDLTVDES SQDSPPSQASLTPGRAAPQAGSGSVCGETASVPGLPTEGSVPLPADFFSK VSAETQASQPEGPGTGPMEEGHEAAPEFTFHVEIKASTPKEQDLEGATVV GVPGEEQKAQTQGPSVGKGTKEASLQEPPGKQPAAGLPGRPVSRVPQLKA RVASKDRTGNDEKKAKTSTPSCAKAPSHRPCLSPTRPTLGSSDPLIKPSS PAVSPEPATSPKHVSSVTPRNGSPGTKQMKLKGADGKTGAKIATPRGAAS PAQKGTSNATRIPAKTTPSPKTPPGSGEPPKSGERSGYSSPGSPGTPGSR SRTPSLPTPPTREPKKVAVVRTPPKSPSASKSRLQTAPVPMPDLKNVRSK IGSTENLKHQPGGGKVQIINKKLDLSNVQSKCGSKDNIKHVPGGGSVQIV YKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDN ITHVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGDTSPRHLS NVSSTGSIDMVDSPQLATLADEVSASLAKQGL
Molecular Weight 78 kDa including tags
Purity >90% SDS-PAGE.
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method
Formulation Liquid Solution
Stability The recombinant protein samples are stable for up to 12 months at -80°C
Reconstitution See related COA
Unit Definition For Research Use Only
Storage Buffer Shipped at 4°C. Store at -20°C or -80°C. Avoid freeze / thaw cycle.

Target Details

Target Function Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by tau localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization.
Subcellular Location Cytoplasm, cytosol. Cell membrane; Peripheral membrane protein; Cytoplasmic side. Cytoplasm, cytoskeleton. Cell projection, axon. Cell projection, dendrite. Secreted.
Database References
Associated Diseases May be involved in the pathogenesis of cytoplasmic inclusions (as Mallory bodies) in livers of mice chronically intoxicated with Griseofulvin or DDC (3,5-diethoxycarbonyl-2,4-dihydrocollidine), a model for human alcoholic hepatitis. Alteration of Tau (abnormal phosphorylation and cross-linking) could contribute to Mallory bodies formation and disturbance of microtubule function in alcoholic liver disease.
Tissue Specificity Expressed in neurons and at a lower level in the liver and kidney. Isoform PNS-tau is expressed in the peripheral nervous system while the others are expressed in the central nervous system.

Gene Functions References

  1. that tau modulates motility in a motor-specific manner to direct intracellular transport PMID: 29077261
  2. the AD-like tau accumulation induces anxiety through disrupting miR92a-vGAT-GABA signaling, which reveals molecular mechanisms underlying the anxiety behavior in AD patients and potentially leads to the development of new therapeutics for tauopathies. PMID: 28129110
  3. These results show for the first time that the phosphorylation and isoform alteration of tau are regulated differently during mouse development. PMID: 29196605
  4. In adult and aged tau(+/+), tau(+/-), tau(-/-) mice tau deficiency could not induce significant motor disorders. However, found lower expression levels of transcription factors Orthodenticle homeobox 2 (OTX2) of midbrain dopaminergic neurons in older aged mice. Results suggested that tau deficiency alone might not be enough to mimic the pathology of Parkinson's disease. PMID: 29337233
  5. Tau deletion increased ATP production and improved the recognition memory and attentive capacity of juvenile mice. PMID: 30077079
  6. MAPT variant interaction with mutant amyloid protein precursor causes frontotemporal dementia. PMID: 29729423
  7. These results establish that in addition to the neuritic plaque, a second determinant is required to drive the conversion of wild-type tau. PMID: 27373369
  8. miR-322 promotes Tau phosphorylation via negatively controlling BDNF-TrkB receptor activation PMID: 29464486
  9. High tau expression is associated with blood vessel abnormalities and angiogenesis in Alzheimer's disease. PMID: 29358399
  10. Disinhibiation of Gas6 binding to Tyro3 due to PGRN reduction results in activation of PKCalpha via PLCgamma, inducing tau phosphorylation at Ser203, mislocalization of tau to dendritic spines, and spine loss. PMID: 29382817
  11. frontotemporal dementia and parkinsonism linked to chromosome 17 tau with a mutation in the C-terminal region had different banding patterns, indicating a different phosphorylation pattern. PMID: 27641626
  12. For the three conditions, FRAP analysis revealed a similar mobility in dendrites compared with axons; however, Tau-mEOS2 was less mobile than hWT-Tau and hP301L-Tau and the mobile fraction was smaller, possibly reflecting less efficient microtubule binding of Tau when over-expressed. Together, our study presents Tau-mEOS2 mice as a novel tool for the study of Tau in a physiological and a pathological context. PMID: 27378256
  13. Chronic Dyrk1 inhibition reversed cognitive deficits in Alzheimer's disease transgenic mice via reduction of APP and phosphorylated tau pathology. PMID: 28779511
  14. Results suggest the importance of the autophagosome for the low-frequency stimulation-induced oligomerization of tau and suggest a reason for its age dependency. Interestingly, the lysosomal disturbance promoted the formation of the fibrillar form of aggregates consisting of hyper-phosphorylated tau. PMID: 28874186
  15. deletion or inhibition of the cytoplasmic shuttling factor HDAC6 suppressed neuritic tau bead formation in neurons. PMID: 28854366
  16. The present findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA, and that these changes may occur in the absence of Abeta pathology. PMID: 28922155
  17. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer's disease. PMID: 27221467
  18. results demonstrate that ApoE affects tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independently of amyloid-beta pathology; ApoE4 exerts a 'toxic' gain of function whereas the absence of ApoE is protective PMID: 28959956
  19. Study demonstrated that, in ob/ob mice, type 2 diabetes leads to a progressive tau hyperphosphorylation due to hypothermia, which is reversed by normothermia but not by acute leptin injections or 15 weeks caffeine treatment. PMID: 27793638
  20. study reports that tau is present in the heart and loss of tau in the heart causes elevated blood pressure and altered cardiac performance in aged mice. PMID: 28059795
  21. These data are consistent with other observations that the rapidly depositing Tg4510 mouse is a challenging model in which to demonstrate efficacy of tau-lowering treatments compared to some other preclinical models of tau deposition/overexpression. PMID: 28655349
  22. Data show that tau promotes excitotoxicity by a post-synaptic mechanism. PMID: 28883427
  23. Tau as an essential mediator of the adverse effects of stress on brain structure and function. PMID: 27274066
  24. Study demonstrated that phosphorylated-tau spreads gradually and selectively from the injured cortex to other brain regions after traumatic brain injury and that all of the affected regions are part of the working memory circuit. PMID: 28163095
  25. Study demonstrates a mechanistic link between brain Abeta deposition and CSF tau, and thus, CSF tau may present an important readout of Abeta deposition in mouse models and likely in Alzheimer's disease. PMID: 27750032
  26. Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. Tau is readily transported from the brain to the blood. PMID: 27234211
  27. Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation. PMID: 28864542
  28. Intermittent hypoxia treatment (IHT)-induced cognitive impairment may be partially explained by the fact that IHT increases phosphorylated tau via biological processes common to aging. PMID: 28057021
  29. Pin1 serves as a positive regulatory molecule of proplatelet formation of megakaryocytes by enhancing the function of phosphorylated tau. PMID: 28943044
  30. PGRN decrease, resulting from pathogenic mutations, might compromise the trophism of cortical neurons by affecting GluN2B-contaning NMDA receptors PMID: 28899992
  31. These data provide evidence that amyloid beta acts to enhance tau pathology by increasing the formation of tau species capable of seeding new aggregates. PMID: 28500862
  32. These results suggest that tau haploinsufficiency, without the compensation effect of MAP1A, induces reduction of Otx2 expression, increases prenatal cell death, and accordingly leads to selective loss of VTA DA neurons in the early postnatal stage. PMID: 28424350
  33. High-glucose induces tau hyperphosphorylation through activation of TLR9-P38 MAPK pathway. PMID: 28803064
  34. these results uncover a novel role for mDia1 in Abeta-mediated synaptotoxicity and demonstrate that inhibition of MT dynamics and accumulation of PTMs are driving factors for the induction of tau-mediated neuronal damage. PMID: 28877993
  35. The authors show here that miR-132 loss exacerbates both amyloid and TAU pathology via inositol 1,4,5-trisphosphate 3-kinase B (ITPKB) upregulation in an Alzheimer's disease mouse model. PMID: 27485122
  36. TIA1 knockdown or knockout inhibits tau misfolding and associated toxicity in cultured hippocampal neurons, while overexpressing TIA1 induces tau misfolding and stimulates neurodegeneration. PMID: 27160897
  37. Data suggest that a switch in post-translational processing of Tau from acetylation at Lys321 to phosphorylation at Ser324 coordinately regulates Tau aggregation and may be relevant in tauopathy and Alzheimer disease; acetylation/phosphorylation of Tau appears to be controlled by Hdac6 (histone deacetylase 6 protein). PMID: 28760828
  38. ROS produced by 1,2-diacetylbenzene causes tau hyperphosphorylation via GSK-3beta phosphorylation and it might be related to impaired memory deficit. PMID: 28734998
  39. tau overexpression mediates the excitatory toxicity induced by E-NMDAR activation through inhibiting ERK phosphorylation. PMID: 27809304
  40. Data suggest that a presumed diffusion barrier within axon initial segment (AIS) regulates wild-type Tau sorting: retrograde (axon-to-soma) and anterograde (soma-to-axon) sorting of Tau. Tau isoforms without N-terminal inserts are sorted efficiently into axons; a longer isoform (2N4R-Tau) is partially retained in cell bodies/dendrites and accelerates spine/dendrite growth. PMID: 28536263
  41. This study establishes a mouse model of sporadic tauopathies and points to important differences between tau fibrils that are generated artificially and authentic ones that develop in Alzheimer's disease brains. PMID: 27810929
  42. tau diffusion on microtubules enables to keep microtubules evenly distributed in axonal sections at low tau levels. PMID: 27076215
  43. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD DeltaK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems. PMID: 28678786
  44. our findings suggest that tau is a common downstream factor in both amyloid-dependent and-independent pathogenic mechanisms and therefore could be a more effective drug target for therapeutic intervention in AD. PMID: 27459671
  45. Study focused functional consequences of human tau accumulation: aging htau mice (deficient of murine tau but express all six human tau isoforms) compared with murine tau knock-out and C57Bl/6J mice; reduced food-burrowing performance was the most robust aspect of the htau phenotype with aging, htau phenotype appeared stronger than the mtau(-/-) phenotype at young ages but milder with aging. PMID: 27167086
  46. Results may provide support for the hypothesis that enhanced expression of tau following lipopolysaccharide administration is a protective measure by hippocampal neurons to compensate for the loss of the microtubule-stabilizing protein due to phosphorylation. More importantly, our results support the hypothesis that blocking the production of Abeta that follows inflammation also leads to reduced tau phosphorylation PMID: 27320209
  47. Study identified microtubule-associated protein tau as a highly sensitive constituent of the cytoskeleton in the presence of experimental stroke, thus providing novel evidence for a pivotal role of cytoskeletal elements under ischemic conditions PMID: 27189884
  48. These findings suggest that TDP-43 promotes tau exon 10 inclusion and 4R-tau expression and that disease-related changes of TDP-43, truncations and mutations, affect its function in tau exon 10 splicing, possibly because of TDP-43 mislocalization to the cytoplasm. PMID: 28487370
  49. Thus, these data demonstrate that Tau(-/-) mice show impairments in the maturation of newborn granule neurons under basal conditions and that they are insensitive to the modulation of adult hippocampal neurogenesis exerted by both stimulatory and detrimental stimuli. PMID: 27198172
  50. this work provides insights into postsynaptic processes in Alzheimer's disease pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity. PMID: 27856911

FAQs

Please fill out the Online Inquiry form located on the product page. Key product information has been pre-populated. You may also email your questions and inquiry requests to sales1@betalifesci.com. We will do our best to get back to you within 4 business hours.

Feel free to use the Chat function to initiate a live chat. Our customer representative can provide you with a quote immediately.

Proteins are sensitive to heat, and freeze-drying can preserve the activity of the majority of proteins. It improves protein stability, extends storage time, and reduces shipping costs. However, freeze-drying can also lead to the loss of the active portion of the protein and cause aggregation and denaturation issues. Nonetheless, these adverse effects can be minimized by incorporating protective agents such as stabilizers, additives, and excipients, and by carefully controlling various lyophilization conditions.

Commonly used protectant include saccharides, polyols, polymers, surfactants, some proteins and amino acids etc. We usually add 8% (mass ratio by volume) of trehalose and mannitol as lyoprotectant. Trehalose can significantly prevent the alter of the protein secondary structure, the extension and aggregation of proteins during freeze-drying process; mannitol is also a universal applied protectant and fillers, which can reduce the aggregation of certain proteins after lyophilization.

Our protein products do not contain carrier protein or other additives (such as bovine serum albumin (BSA), human serum albumin (HSA) and sucrose, etc., and when lyophilized with the solution with the lowest salt content, they often cannot form A white grid structure, but a small amount of protein is deposited in the tube during the freeze-drying process, forming a thin or invisible transparent protein layer.

Reminder: Before opening the tube cap, we recommend that you quickly centrifuge for 20-30 seconds in a small centrifuge, so that the protein attached to the tube cap or the tube wall can be aggregated at the bottom of the tube. Our quality control procedures ensure that each tube contains the correct amount of protein, and although sometimes you can't see the protein powder, the amount of protein in the tube is still very precise.

To learn more about how to properly dissolve the lyophilized recombinant protein, please visit Lyophilization FAQs.

Recently viewed